000125729 000__ 01069cam\a2200325W1\4500 000125729 001__ 125729 000125729 005__ 20210513044023.0 000125729 008__ 841019s1985\\\\enka\\\\\b\\\\00110\eng\\ 000125729 010__ $$a84-022996 000125729 020__ $$a0521278538 (pbk.) :$$c32.00 000125729 035__ $$a(OCoLC)ocm11469962 000125729 035__ $$a00387469 000125729 035__ $$9AAN9570SI 000125729 035__ $$a125729 000125729 040__ $$aDLC$$cDLC$$dm/c 000125729 049__ $$aISEA 000125729 0500_ $$aQA251.3$$b.S34 1985 000125729 0820_ $$a512/.4$$219 000125729 099__ $$aQA251.3 .S34 1985 000125729 1001_ $$aSchofield, A. H.$$q(Aidan Harry),$$d1957- 000125729 24510 $$aRepresentation of rings over skew fields /$$cA.H. Schofield. 000125729 260__ $$aCambridge [Cambridgeshire] ;$$aNew York :$$bCambridge University Press,$$c1985. 000125729 300__ $$axii, 223 p. :$$bill. ;$$c23 cm. 000125729 440_0 $$aLondon Mathematical Society lecture note series ;$$v92 000125729 500__ $$aIncludes index. 000125729 504__ $$aBibliography: p. 219-221. 000125729 650_0 $$aCommutative rings. 000125729 650_0 $$aRepresentations of rings (Algebra) 000125729 650_0 $$aSkew fields. 000125729 85200 $$bgen$$hQA251.3 .S34 1985 000125729 909CO $$ooai:library.usi.edu:125729$$pGLOBAL_SET 000125729 966__ $$c 1$$lUSIGEN$$mBKGEN$$sQA251.3 .S34 1985$$p32.00$$xISEA$$z050$$b39203009863007 000125729 980__ $$aBIB 000125729 980__ $$aBOOK