Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS
Cite
Citation

Linked e-resources

Details

TABLE OF CONTENTS; ACKNOWLEDGEMENTS; INTRODUCTION; NOTES; 1. CURRICULAR INNOVATION AND DIDACTIC-PEDAGOGICAL RISK MANAGEMENT: Teaching Modern and Contemporary Physics in High Schools; INTRODUCTION; RESEARCH IN THE CONTEXT OF INNOVATION; MANAGEMENT OF RIISK TAKEN; I. The perception that there is a tradition in physics education; II. The perception that something must change within the classroom; III. The perception that teachers must accept the risk of failure; IV. The willingness to participate and find support in an innovative group; CONCLUSION; NOTES; REFERENCES.

2. ELEMENTARY PARTICLE PHYSICS FOR HIGH SCHOOLSINTRODUCTION; THE CONTRIBUTIONS OF ELEMENTARY PARTICLE PHYSICS TO HIGH SCHOOL EDUCATION; TRANSFORMING KNOWLEDGE TO THE CLASSROOM: THE DIDACTIC TRANSPOSITION THEORY; PROPOSAL OF ACTIVITIES; OBSTACLES AND CHALLENGES; FINAL CONSIDERATIONS; NOTES; REFERENCES; 3. PARTICLE ACCELERATORS AND DIDACTIC OBSTACLESA: Teaching and Learning Experience in São Paulo and Cataluña; INTRODUCTION; A NEW SCIENCE OF PHENOMENOTECHNICAL KNOWLEDGE; THE COURSE ON PARTICLE ACCELERATORS; THE IMPLEMENTATION OF THE COURSE AND SOME LEARNING OBSTACLES.

Computer Simulations in Science EducationVisualization of Simulations and Student Interpretations of Depicted Content; Students' Explanations of the Scientific Content of Simulations; RESEARCH OBJECTIVES AND METHODOLOGICAL APPROACH; ANALYSIS OF DATA AND RESULTS; Analysis of Students' Explanations Regarding the "Friction" Simulation; Analysis of Students' Explanations Regarding the "Faraday's Law" Simulation; Summary of Students' Alternative Explanations; Discussion of Students' Underlying Reasoning Mechanisms; CONCLUSIONS AND IMPLICATIONS; ACKNOWLEDGEMENT; REFERENCES.

Recognition of the Functionality of PrerequisitesKnowing How to Re-Signify Physical Concepts; Knowing How to Interpret Equations; Familiarity with Abstract Concepts; Knowing How to Transform Questions; NOTES; REFERENCES; 5. SCIENCE STAND: Crossing Borders between Sciences, Arts, and Humanities in a Decentralized Science Dissemination Program; BACKGROUND AND PRINCIPLES; THE SCIENCE STAND; CONCLUSIONS AND RESEARCH DEVELOPMENTS; NOTES; REFERENCES; 6. COMPUTER SIMULATIONS AND STUDENTS' DIFFICULTIES IN READING VISUAL REPRESENTATIONS IN SCIENCE EDUCATION; INTRODUCTION AND RATIONALE.

Situation 1
Scarcely Adequate Images and TextsSituation 2
Inadequacy in the Lack of Metaphor Deconstruction; Situation 3
Emphasis on Mass Concentration in the Nuclear Atom; FINAL IDEAS; NOTES; REFERENCES; 4. A TEACHING-LEARNING SEQUENCE ON THECONCEPT OF MASS AND REQUIRED SKILLS FOR TEACHING RELATIVITY; INTRODUCTION; MOTIVATION FOR THE CONCEPT OF MASS THEME; DESIGN-BASED RESEARCH AND TEACHING-LEARNING SEQUENCES; OUR TEACHING-LEARNING SEQUENCE ON THE CONCEPT OF MASS; Design Principles; Objectives of the Course; The Course Plan; General Features of the Course; DIDACTIC RESULTS.

Browse Subjects

Show more subjects...

Statistics

from
to
Export