An introduction to computational learning theory / Michael J. Kearns, Umesh V. Vazirani.
1994
Q325.5 .K44 1994eb
Linked e-resources
Linked Resource
Details
Title
An introduction to computational learning theory / Michael J. Kearns, Umesh V. Vazirani.
Author
ISBN
0585350531 (electronic bk.)
9780585350530 (electronic bk.)
0262276860 (electronic bk.)
9780262276863 (electronic bk.)
0262111934
9780262111935
9780585350530 (electronic bk.)
0262276860 (electronic bk.)
9780262276863 (electronic bk.)
0262111934
9780262111935
Publication Details
Cambridge, Mass. : MIT Press, ©1994.
Language
English
Description
1 online resource (xii, 207 pages) : illustrations
Call Number
Q325.5 .K44 1994eb
Dewey Decimal Classification
006.3
Summary
Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics.Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning.Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs.The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.
Access Note
Access limited to authorized users.
Source of Description
OCLC-licensed vendor bibliographic record.
Added Author
Record Appears in