Visual population codes : toward a common multivariate framework for cell recording and functional imaging.
2012
QP475.V586 2012
Linked e-resources
Linked Resource
Details
Title
Visual population codes : toward a common multivariate framework for cell recording and functional imaging.
ISBN
0262016249
9780262016247
9780262303576
0262303574
9780262016247
9780262303576
0262303574
Published
[Place of publication not identified] MIT Press 2012.
Copyright
©2012
Language
English
Description
1 online resource.
Call Number
QP475.V586 2012
Dewey Decimal Classification
573.8/819
Summary
How visual content is represented in neuronal population codes and how to analyze such codes with multivariate techniques. Vision is a massively parallel computational process, in which the retinal image is transformed over a sequence of stages so as to emphasize behaviorally relevant information (such as object category and identity) and deemphasize other information (such as viewpoint and lighting). The processes behind vision operate by concurrent computation and message passing among neurons within a visual area and between different areas. The theoretical concept of "population code" encapsulates the idea that visual content is represented at each stage by the pattern of activity across the local population of neurons. Understanding visual population codes ultimately requires multichannel measurement and multivariate analysis of activity patterns. Over the past decade, the multivariate approach has gained significant momentum in vision research. Functional imaging and cell recording measure brain activity in fundamentally different ways, but they now use similar theoretical concepts and mathematical tools in their modeling and analyses. With a focus on the ventral processing stream thought to underlie object recognition, this book presents recent advances in our understanding of visual population codes, novel multivariate pattern-information analysis techniques, and the beginnings of a unified perspective for cell recording and functional imaging. It serves as an introduction, overview, and reference for scientists and students across disciplines who are interested in human and primate vision and, more generally, in understanding how the brain represents and processes information.
Access Note
Access limited to authorized users.
Source of Description
OCLC-licensed vendor bibliographic record.
Record Appears in