001390426 000__ 11761nam\a2200565\i\4500 001390426 001__ 1390426 001390426 003__ DLC 001390426 005__ 20220420003054.0 001390426 006__ m\\\\\o\\d\\\\\\\\ 001390426 007__ cr\cn\nnnunnun 001390426 008__ 210331t20212021nju\\\\\ob\\\\001\0\eng\d 001390426 010__ $$a 2021015273 001390426 020__ $$a9781119665441$$q(electronic book) 001390426 020__ $$a1119665442$$q(electronic book) 001390426 020__ $$a9781119665434$$q(electronic book) 001390426 020__ $$a1119665434$$q(electronic book) 001390426 020__ $$a9781119665458$$q(electronic book) 001390426 020__ $$a1119665450$$q(electronic book) 001390426 020__ $$z9781119665427 001390426 020__ $$z1119665426 001390426 0247_ $$a10.1002/9781119665458$$2doi 001390426 040__ $$aNhCcYBP$$cNhCcYBP 001390426 042__ $$apcc 001390426 050_4 $$aTK5103.4873$$b.T43 2021 001390426 08200 $$a621.384$$223 001390426 1001_ $$aThakur, Prabhat,$$eauthor. 001390426 24510 $$aSpectrum sharing in cognitive radio networks :$$btowards highly connected environments /$$cPrabhat Thakur and Ghanshyam Singh. 001390426 264_1 $$aHoboken, NJ :$$bJohn Wiley & Sons, Inc.,$$c2021. 001390426 264_4 $$c©2021 001390426 300__ $$a1 online resource. 001390426 336__ $$atext$$btxt$$2rdacontent 001390426 337__ $$acomputer$$bc$$2rdamedia 001390426 338__ $$aonline resource$$bcr$$2rdacarrier 001390426 504__ $$aIncludes bibliographical references and index. 001390426 5050_ $$aPreface xiii -- Special Acknowledgements xxi -- List of Acronyms xxiii -- List of Figures xxvii -- List of Tables xxxiii -- List of Symbols xxxv -- 1 Introduction 1 -- 1.1 Introduction 1 -- 1.1.1 Connected Environments 2 -- 1.1.2 Evolution of Wireless Communication 5 -- 1.1.3 Third Generation Partnership Project 10 -- 1.2 Cognitive Radio Technology 10 -- 1.2.1 Spectrum Accessing/Sharing Techniques 13 -- 1.2.1.1 Interweave Spectrum Access 14 -- 1.2.1.2 Underlay Spectrum Access 17 -- 1.2.1.3 Overlay Spectrum Access 17 -- 1.2.1.4 Hybrid Spectrum Access 17 -- 1.3 Implementation of CR Networks 20 -- 1.4 Motivation 22 -- 1.5 Organization of Book 23 -- 1.6 Summary 27 -- References 27 -- 2 Advanced Frame Structures in Cognitive Radio Networks 39 -- 2.1 Introduction 39 -- 2.2 Related Work 40 -- 2.2.1 Frame Structures 40 -- 2.2.2 Spectrum Accessing Strategies 41 -- 2.3 Proposed Frame Structures for HSA Technique 43 -- 2.4 Analysis of Throughput and Data Loss 45 -- 2.5 Simulations and Results 47 -- 2.6 Summary 50 -- References 51 -- 3 Cognitive Radio Network with Spectrum Prediction and Monitoring -- Techniques 55 -- 3.1 Introduction 55 -- 3.2 Related Work 57 -- 3.2.1 Spectrum Prediction 57 -- 3.2.2 Spectrum Monitoring 58 -- 3.3 System Models 59 -- 3.3.1 System Model for Approach-1 59 -- 3.3.2 System Model for Approach-2 60 -- 3.4 Performance Analysis 61 -- 3.4.1 Throughput Analysis Using Approach-1 61 -- 3.4.2 Analysis of Performance Metrics of the Approach-2 65 -- 3.5 Results and Discussion 67 -- 3.5.1 Proposed Approach-1 67 -- 3.5.2 Proposed Approach-2 69 -- 3.6 Summary 72 -- References 72 -- 4 Effect of Spectrum Prediction in Cognitive Radio Networks 77 -- 4.1 Introduction 77 -- 4.1.1 Spectrum Access Techniques 78 -- 4.2 System Model 80 -- 4.3 Throughput Analysis 87 -- 4.4 Simulation Results and Discussion 89 -- 4.5 Summary 93 -- References 94 -- 5 Effect of Imperfect Spectrum Monitoring on Cognitive Radio -- Networks 97 -- 5.1 Introduction 97 -- 5.2 Related Work 99 -- 5.2.1 Spectrum Sensing 99 -- 5.2.2 Spectrum Monitoring 100 -- 5.3 System Model 101 -- 5.4 Performance Analysis of Proposed System Using Imperfect Spectrum -- Monitoring 102 -- 5.4.1 Computation of Ratio of the Achieved Throughput to Data Loss 108 -- 5.4.2 Computation of Power Wastage 108 -- 5.4.3 Computation of Interference Efficiency 109 -- 5.4.4 Computation of Energy Efficiency 109 -- 5.5 Results and Discussion 110 -- 5.6 Summary 115 -- References 116 -- 6 Cooperative Spectrum Monitoring in Homogeneous and -- Heterogeneous Cognitive Radio Networks 121 -- 6.1 Introduction 121 -- 6.2 Background 122 -- 6.3 System Model 124 -- 6.4 Performance Analysis of Proposed CRN 126 -- 6.4.1 Computation of Achieved Throughput and Data Loss 130 -- 6.4.2 Computation of Interference Efficiency 131 -- 6.4.3 Computation of Energy Efficiency 131 -- 6.5 Results and Discussion 132 -- 6.5.1 Homogeneous Cognitive Radio Network 132 -- 6.5.2 Heterogeneous Cognitive Radio Networks 134 -- 6.6 Summary 143 -- References 143 -- 7 Spectrum Mobility in Cognitive Radio Networks Using Spectrum -- Prediction and Monitoring Techniques 147 -- 7.1 Introduction 147 -- 7.2 System Model 151 -- 7.3 Performance Analysis 153 -- 7.4 Results and Discussion 156 -- 7.5 Summary 162 -- References 163 -- 8 Hybrid Self-Scheduled Multichannel Medium Access Control Protocol -- in Cognitive Radio Networks 167 -- 8.1 Introduction 167 -- 8.2 Related Work 169 -- 8.2.1 CR-MAC Protocols 169 -- 8.2.2 Interference at PU 171 -- 8.3 System Model and Proposed Hybrid Self-Scheduled Multichannel -- MAC Protocol 172 -- 8.3.1 System Model 172 -- 8.3.2 Proposed HSMC-MAC Protocol 173 -- 8.4 Performance Analysis 174 -- 8.4.1 With Perfect Spectrum Sensing 176 -- 8.4.2 With Imperfect Spectrum Sensing 178 -- 8.4.3 More Feasible Scenarios 180 -- 8.5 Simulations and Results Analysis 182 -- 8.5.1 With Perfect Spectrum Sensing 182 -- 8.5.2 With Imperfect Spectrum Sensing 185 -- 8.6 Summary 190 -- References 190 -- 9 Frameworks of Non-Orthogonal Multiple Access Techniques in -- Cognitive Radio Networks 195 -- 9.1 Introduction 195 -- 9.1.1 Related Work 196 -- 9.1.2 Motivation 199 -- 9.1.3 Organization 199 -- 9.2 CR Spectrum Accessing Strategies 199 -- 9.3 Functions of NOMA System for Uplink and Downlink Scenarios 204 -- 9.3.1 Downlink Scenario for Cellular-NOMA 204 -- 9.3.2 Uplink Scenario for Cellular-NOMA 207 -- 9.4 Proposed Frameworks of CR with NOMA 208 -- 9.4.1 Framework-1 209 -- 9.4.2 Framework-2 210 -- 9.5 Simulation Environment and Results 212 -- 9.6 Research Potentials for NOMA and CR-NOMA Implementations 213 -- 9.6.1 Imperfect CSI 214 -- 9.6.2 Spectrum Hand-off Management 215 -- 9.6.3 Standardization 215 -- 9.6.4 Less Complex and Cost-Effective Systems 215 -- 9.6.5 Energy-Efficient Design and Frameworks 216 -- 9.6.6 Quality-of-Experience Management 216 -- 9.6.7 Power Allocation Strategy for CUs to Implement NOMA Without -- Interfering PU 217 -- 9.6.8 Cooperative CR-NOMA 217 -- 9.6.9 Interference Cancellation Techniques 217 -- 9.6.10 Security Aspects in CR-NOMA 218 -- 9.6.11 Role of User Clustering and Challenges 218 -- 9.6.12 Wireless Power Transfer to NOMA 219 -- 9.6.13 Multicell NOMA with Coordinated Multipoint Transmission 220 -- 9.6.14 Multiple-Carrier NOMA 221 -- 9.6.15 Cross-Layer Design 221 -- 9.6.16 MIMO-NOMA-CR 222 -- 9.7 Summary 222 -- References 223 -- 10 Performance Analysis of MIMO-Based CR-NOMA Communication -- Systems 229 -- 10.1 Introduction 229 -- 10.2 Related Work for Several Combinations of CR, NOMA, and MIMO -- Systems 231 -- 10.3 System Model 234 -- 10.3.1 Downlink Scenarios 236 -- 10.3.2 Uplink Scenario 238 -- 10.4 Performance Analysis 238 -- 10.4.1 Downlink Scenario 238 -- 10.4.1.1 Throughput Computation for MIMO-CR-NOMA 239 -- 10.4.1.2 Throughput Computation for CR-NOMA Systems 240 -- 10.4.1.3 Sum Throughput for CR-OMA, CR-NOMA, CR-MIMO, and -- CR-NOMA-MIMO Frameworks 240 -- 10.4.2 Uplink Scenario 241 -- 10.4.2.1 Throughput Computation for MIMO-CR-NOMA 241 -- 10.4.2.2 Throughput Calculation for CR-NOMA Systems 242 -- 10.4.2.3 Sum Throughput for CR-OMA, CR-NOMA, CR-MIMO, and -- CR-NOMA-MIMO Frameworks 242 -- 10.4.2.4 Computation of Interference Efficiency of CU-4 In Case of -- CR-MIMO-NOMA 243 -- 10.5 Simulation and Results Analysis 243 -- 10.5.1 Simulation Results for Downlink Scenario 243 -- 10.5.2 Simulation Results for Uplink Scenario 245 -- 10.6 Summary 249 -- References 250 -- 11 Interference Management in Cognitive Radio Networks 255 -- 11.1 Introduction 255 -- 11.1.1 White space 257 -- 11.1.2 Grey Spaces 257 -- 11.1.3 Black Spaces 257 -- 11.1.4 Interference Temperature 257 -- 11.2 Interfering and Non-interfering CRN 258 -- 11.2.1 Interfering CRN 258 -- 11.2.2 Non-Interfering CRN 259 -- 11.3 Interference Cancellation Techniques in the CRN 261 -- 11.3.1 At the CU Transmitter 261 -- 11.3.2 At the CR-Receiver 264 -- 11.4 Cross-Layer Interference Mitigation in Cognitive Radio Networks 268 -- 11.5 Interference Management in Cognitive Radio Networks via Cognitive -- Cycle Constituents 269 -- 11.5.1 Spectrum Sensing 269 -- 11.5.2 Spectrum Prediction 269 -- 11.5.3 Transmission Below PUs' Interference Tolerable Limit 271 -- 11.5.4 Using Advanced Encoding Techniques 271 -- 11.5.5 Spectrum Monitoring 272 -- 11.6 Summary 274 -- References 274 -- 12 Simulation Frameworks and Potential Research Challenges for -- Internet-of-Vehicles Networks 281 -- 12.1 Introduction 281 -- 12.1.1 Consumer IoT 283 -- 12.1.2 Industrial IoT 283 -- 12.2 Applications of CIoT 284 -- 12.2.1 Smart Home and Automation 284 -- 12.2.2 Smart Wearables 284 -- 12.2.3 Home Security and Smart Domestics 285 -- 12.2.4 Smart Farming 285 -- 12.3 Applications of Industrial IoT 285 -- 12.3.1 Smart Industry 286 -- 12.3.2 Smart Grid/Utilities 286 -- 12.3.3 Smart Communication 286 -- 12.3.4 Smart City 287 -- 12.3.5 Smart Energy Management 287 -- 12.3.6 Smart Retail Management 288 -- 12.3.7 Robotics 288 -- 12.3.8 Smart Cars/Connected Vehicles 289 -- 12.4 Communication Frameworks for IoVs 289 -- 12.4.1 Vehicle-to-Vehicle (V2V) Communication 291 -- 12.4.2 Vehicle to Infrastructure (V2I) Communication 292 -- 12.4.3 Infrastructure to Vehicles (I2V) Communication 293 -- 12.4.4 Vehicle-to-Broadband (V2B) Communication 293 -- 12.4.5 Vehicle-to-Pedestrians (V2P) Communication 293 -- 12.5 Simulation Environments for Internet-of-Vehicles 295 -- 12.5.1 SUMO 296 -- 12.5.2 Network Simulator (NetSim) 296 -- 12.5.3 Ns-2 297 -- 12.5.4 Ns-3 297 -- 12.5.5 OMNeT++ 298 -- 12.6 Potential 001390426 5050_ $$aResearch Challenges 299 -- 12.6.1 Social Challenges 299 -- 12.6.2 Technical Challenges 300 -- 12.7 Summary 302 -- References 302 -- 13 Radio Resource Management in Internet-of-Vehicles 311 -- 13.1 Introduction 311 -- 13.1.1 Dedicated Short-Range Communication 313 -- 13.1.2 Wireless Access for Vehicular Environments 314 -- 13.1.3 Communication Access for Land Mobile (CALM) 314 -- 13.2 Cellular Communication 315 -- 13.2.1 3GPP Releases 315 -- 13.2.2 Long-Term Evolution 317 -- 13.2.3 New Radio 317 -- 13.2.4 Dynamic Spectrum Access 318 -- 13.3 Role of Cognitive Radio for Spectrum Management 319 -- 13.4 Effect of Mobile Nature of Vehicles/Nodes on the Networking 320 -- 13.5 Spectrum Sharing in IoVs 322 -- 13.5.1 Spectrum Sensing Scenarios 322 -- 13.5.2 Spectrum Sharing Scenarios 324 -- 13.5.3 Spectrum Mobility/Handoff Scenarios 325 -- 13.6 Frameworks of Vehicular Networks with Cognitive Radio 326 -- 13.6.1 CR-Based IoVs Networks Architecture 327 -- 13.7 Key Potentials and Research Challenges 328 -- 13.7.1 Key Potentials 328 -- 13.7.2 Research Challenges 329 -- 13.8 Summary 333 -- References 333 -- Index 000. 001390426 506__ $$aAccess limited to authorized users 001390426 533__ $$aElectronic reproduction.$$bAnn Arbor, MI$$nAvailable via World Wide Web. 001390426 588__ $$aDescription based on online resource; title from digital title page (viewed on April 13, 2022). 001390426 650_0 $$aRadio resource management (Wireless communications) 001390426 650_0 $$aCognitive radio networks. 001390426 655_0 $$aElectronic books 001390426 7001_ $$aSingh, Ghanshyam,$$eauthor. 001390426 7102_ $$aProQuest (Firm) 001390426 77608 $$iPrint version:$$aThakur, Prabhat.$$tSpectrum sharing in cognitive radio networks$$bFirst edition.$$dHoboken : Wiley, 2021$$z9781119665427$$w(DLC) 2021015272 001390426 852__ $$bebk 001390426 85640 $$3GOBI DDA$$uhttps://univsouthin.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/usiricelib-ebooks/detail.action?docID=6630968$$zOnline Access 001390426 909CO $$ooai:library.usi.edu:1390426$$pGLOBAL_SET 001390426 980__ $$aBIB 001390426 980__ $$aEBOOK 001390426 982__ $$aEbook 001390426 983__ $$aOnline