Linked e-resources
Details
Table of Contents
Machine generated contents note: 1.Introduction / Matthias Rudolph
1.1.Model extraction challenges
1.2.Model extraction workflow
References
2.DC and thermal modeling: III-V FETs and HBTs / David E. Root
2.1.Introduction
2.2.Basic DC characteristics
2.3.FET DC parameters and modeling
2.4.HBT DC parameters and modeling
2.5.Process control monitoring
2.6.Thermal modeling overview
2.7.Physics-based thermal scaling model for HBTs
2.8.Measurement-based thermal model for FETs
2.9.Transistor reliability evaluation
Acknowledgments
References
3.Extrinsic parameter and parasitic elements in III-V HBT and HEMT modeling / Joseph M. Gering
3.1.Introduction
3.2.Test structures with calibration and de-embedding
3.3.Methods for extrinsic parameter extraction used in HBTs
3.4.Methods for extrinsic parameter extraction used in HEMTs
3.5.Scaling for multicell arrays
References
4.Uncertainties in small-signal equivalent circuit modeling / Matthias Ferndahl
4.1.Introduction
4.2.Uncertainties in direct extraction methods
4.3.Optimizer-based estimation techniques
4.4.Complexity versus uncertainty in equivalent circuit modeling
4.5.Summary and discussion
References
5.The large-signal model: theoretical foundations, practical considerations, and recent trends / Masaya Iwamoto
5.1.Introduction
5.2.The equivalent circuit
5.3.Nonlinear model constitutive relations
5.4.Table-based models
5.5.Models based on artificial neural networks (ANNs)
5.6.Extrapolation of measurement-based models
5.7.Charge modeling
5.8.Terminal charge conservation, delay, and transit time for HBT models
5.9.FET modeling in terms of a drift charge concept
5.10.Parameter extraction of compact models from large-signal data
5.11.Conclusions
References
6.Large and packaged transistors / Matthias Rudolph
6.1.Introduction
6.2.Thermal modeling
6.3.EM simulation
6.4.Equivalent-circuit package model
References
7.Nonlinear characterization and modeling of dispersive effects in high-frequency power transistors / Raymond Quere
7.1.Introduction
7.2.Nonlinear electrothermal modeling
7.3.Trapping effects
7.4.Characterization tools
7.5.Conclusions
Acknowledgment
References
8.Optimizing microwave measurements for model construction and validation / Giovanni Crupi
8.1.Introduction
8.2.Microwave measurements and de-embedding
8.3.Measurements for linear model construction
8.4.Measurements for model validation
8.5.Measurements for nonlinear model construction
References
9.Practical statistical simulation for efficient circuit design / Hongxiao Shao
9.1.Introduction
9.2.Approach, model development, design flow
9.3.Examples of application to real circuits
9.4.Summary
Acknowledgments
References
10.Noise modeling / Manfred Berroth
10.1.Fundamentals
10.2.Noise sources
10.3.Noise analysis in linear network theory
10.4.Noise measurement setups
10.5.Transistor noise parameter extraction
10.6.Summary
References.
1.1.Model extraction challenges
1.2.Model extraction workflow
References
2.DC and thermal modeling: III-V FETs and HBTs / David E. Root
2.1.Introduction
2.2.Basic DC characteristics
2.3.FET DC parameters and modeling
2.4.HBT DC parameters and modeling
2.5.Process control monitoring
2.6.Thermal modeling overview
2.7.Physics-based thermal scaling model for HBTs
2.8.Measurement-based thermal model for FETs
2.9.Transistor reliability evaluation
Acknowledgments
References
3.Extrinsic parameter and parasitic elements in III-V HBT and HEMT modeling / Joseph M. Gering
3.1.Introduction
3.2.Test structures with calibration and de-embedding
3.3.Methods for extrinsic parameter extraction used in HBTs
3.4.Methods for extrinsic parameter extraction used in HEMTs
3.5.Scaling for multicell arrays
References
4.Uncertainties in small-signal equivalent circuit modeling / Matthias Ferndahl
4.1.Introduction
4.2.Uncertainties in direct extraction methods
4.3.Optimizer-based estimation techniques
4.4.Complexity versus uncertainty in equivalent circuit modeling
4.5.Summary and discussion
References
5.The large-signal model: theoretical foundations, practical considerations, and recent trends / Masaya Iwamoto
5.1.Introduction
5.2.The equivalent circuit
5.3.Nonlinear model constitutive relations
5.4.Table-based models
5.5.Models based on artificial neural networks (ANNs)
5.6.Extrapolation of measurement-based models
5.7.Charge modeling
5.8.Terminal charge conservation, delay, and transit time for HBT models
5.9.FET modeling in terms of a drift charge concept
5.10.Parameter extraction of compact models from large-signal data
5.11.Conclusions
References
6.Large and packaged transistors / Matthias Rudolph
6.1.Introduction
6.2.Thermal modeling
6.3.EM simulation
6.4.Equivalent-circuit package model
References
7.Nonlinear characterization and modeling of dispersive effects in high-frequency power transistors / Raymond Quere
7.1.Introduction
7.2.Nonlinear electrothermal modeling
7.3.Trapping effects
7.4.Characterization tools
7.5.Conclusions
Acknowledgment
References
8.Optimizing microwave measurements for model construction and validation / Giovanni Crupi
8.1.Introduction
8.2.Microwave measurements and de-embedding
8.3.Measurements for linear model construction
8.4.Measurements for model validation
8.5.Measurements for nonlinear model construction
References
9.Practical statistical simulation for efficient circuit design / Hongxiao Shao
9.1.Introduction
9.2.Approach, model development, design flow
9.3.Examples of application to real circuits
9.4.Summary
Acknowledgments
References
10.Noise modeling / Manfred Berroth
10.1.Fundamentals
10.2.Noise sources
10.3.Noise analysis in linear network theory
10.4.Noise measurement setups
10.5.Transistor noise parameter extraction
10.6.Summary
References.