001408967 000__ 10883nam\a22004813i\4500 001408967 001__ 1408967 001408967 003__ MiAaPQ 001408967 005__ 20220901003400.0 001408967 006__ m\\\\\o\\d\\\\\\\\ 001408967 007__ cr\cn\nnnunnun 001408967 008__ 220828s2020\\\\xx\\\\\\o\\\\\|||\0\eng\d 001408967 020__ $$a9780768099522 001408967 020__ $$z9780768093520 001408967 035__ $$a(MiAaPQ)EBC28983827 001408967 035__ $$a(Au-PeEL)EBL28983827 001408967 035__ $$a(OCoLC)1277045493 001408967 040__ $$aMiAaPQ$$beng$$erda$$epn$$cMiAaPQ$$dMiAaPQ 001408967 0820_ $$a621.43 001408967 1001_ $$aOnorati, Angelo. 001408967 24510 $$a1D and Multi-D Modeling Techniques for IC Engine Simulation. 001408967 250__ $$a1st ed. 001408967 264_1 $$aWarrendale :$$bSAE International,$$c2020. 001408967 264_4 $$c©2020. 001408967 300__ $$a1 online resource (552 pages). 001408967 336__ $$atext$$btxt$$2rdacontent 001408967 337__ $$acomputer$$bc$$2rdamedia 001408967 338__ $$aonline resource$$bcr$$2rdacarrier 001408967 5050_ $$aCover -- Table of Contents -- Preface -- About the Editors -- CHAPTER 1 State of the Art of 1D Thermo-Fluid Dynamic Simulation Models -- 1.1 Recent Advances in IC Engines and Future Perspectives -- 1.2 The Key Role of IC Engine Simulation Models -- 1.3 Brief History of Wave Dynamics -- 1.4 IC Engine Gas Dynamics -- 1.5 Overview of IC Engine 1D Simulation Codes -- 1.6 Conservation Equations -- 1.6.1 Perfect Gas Assumption -- 1.6.2 Transport of Chemical Species with Reactions -- Definitions, Acronyms, and Abbreviations -- References -- CHAPTER 2 Virtual Engine Development: 1D- and 3D-CFD up to Full Engine Simulation -- 2.1 Introduction -- 2.2 Model Requirements -- 2.3 Assessment of Quasidimensional Models -- 2.3.1 General Assessment Guidelines -- 2.3.2 Practical Examples for SI Engines -- 2.3.2.1 BURN RATE MODEL -- 2.3.2.2 TURBULENCE/CHARGE MOTION MODEL -- 2.3.2.3 LAMINAR FLAME SPEED MODEL -- 2.3.2.4 FLAME GEOMETRY MODEL -- 2.3.2.5 CCV MODEL -- 2.3.2.6 KNOCK MODEL -- 2.3.2.7 NOx MODEL -- 2.3.3 Practical Examples for CI Engines -- 2.3.3.1 BURN RATE/INJECTION MODEL -- 2.3.3.2 WALL HEAT MODEL -- 2.3.3.3 EMISSION MODELS -- 2.4 Assessment of 3D Models (for Fast-Response 3D-CFD Simulations) -- 2.4.1 Model and Calculation Layout in an Innovative Fast-Response 3D-CFD Tool -- 2.4.1.1 TEST BENCH AND LABORATORY ENVIRONMENT -- 2.4.1.2 ZERO-DIMENSIONAL ENVIRONMENT -- 2.4.1.3 3D-CFD ENVIRONMENT -- 2.4.2 New Developed 3D-CFD Models -- 2.4.2.1 3D-CFD ENGINE HEAT TRANSFER -- 2.5 Basics of Engine Design -- 2.5.1 Full Load Design for SI Engines -- 2.5.2 Full Load Design for CI Engines -- 2.6 Application Examples -- 2.6.1 Example 1: Vehicle Acceleration Simulation and Cross-Comparison of Different Engine Concepts -- 2.6.2 Example 2: Tuning of 1D Flow Model. 001408967 5058_ $$a2.6.3 Example 3: Virtual Development of a High-Performance CNG Engine,Full Engine Simulations with a Fast-Response 3D-CFD Tool -- 2.6.3.1 RESULTS (ENGINE DEVELOPMENT STEP 0) -- 2.6.3.2 IMPROVEMENTS (ENGINE DEVELOPMENT STEP 1) -- 2.6.3.3 IMPROVEMENTS (ENGINE DEVELOPMENT STEP 2) -- Abbreviations -- References -- CHAPTER 3 Advanced 0D and QuasiD Thermodynamic Combustion Models for SI and CI Engines -- 3.1 Physical Background (Combustion Regimes for SI and CI Engines) -- 3.1.1 Auto-Ignition -- 3.1.2 Premixed Flames -- 3.1.2.1 LAMINAR -- 3.1.2.2 TURBULENT -- 3.1.2.2.1 Turbulence Reynolds Number -- 3.1.2.2.2 Damköhler Number -- 3.1.2.2.3 Karlovitz Number -- 3.1.3 Diffusion Flames -- 3.1.3.1 LAMINAR -- 3.1.3.1.1 Decompositions into Mixing and Flame Structure Problems -- 3.1.3.1.2 Fuel Mixture Fraction -- 3.1.3.1.3 Scalar Dissipation Rate -- 3.1.3.1.4 Chemical-Kinetics Time Scale -- 3.1.3.1.5 Damköhler Number in the Diffusion Flames -- 3.1.3.1.6 Flame Structure -- 3.1.3.2 TURBULENT -- 3.2 SI Engines Modeling -- 3.2.1 Combustion Models for SI Engines -- 3.2.1.1 SINGLE ZONE -- 3.2.1.2 TWO ZONES -- 3.2.1.3 EDDY BURN-UP -- 3.2.1.4 FRACTAL APPROACH -- 3.2.1.5 COHERENT FLAME MODEL -- 3.2.2 Turbulence Submodels for SI Engines -- 3.2.3 Emission Models for SI Engines -- 3.2.3.1 CARBON MONOXIDE -- 3.2.3.2 NITROGEN OXIDES -- 3.2.4 Knock Models for SI Engines -- 3.2.4.1 IGNITION-DELAY MODELS -- 3.2.4.2 KINETIC MODELS -- 3.3 CI Engines Modeling -- 3.3.1 CI Combustion Phenomenology -- 3.3.2 Spray Models for CI Engines -- 3.3.2.1 FUEL EVAPORATION -- 3.3.2.2 AMBIENT GAS ENTRAINMENT IN THE SPRAY REGION -- 3.3.2.3 FUEL AND AMBIENT AIR MIXING -- 3.3.2.4 TURBULENCE MODELS FOR CI ENGINES -- 3.3.3 Combustion Models for CI Engines -- 3.3.3.1 AUTO-IGNITION PROCESS -- 3.3.3.2 PREMIXED COMBUSTION -- 3.3.3.3 DIFFUSION COMBUSTION -- 3.3.3.4 COMBUSTION PROCESS COMPUTATION. 001408967 5058_ $$a3.3.4 Emission Models for CI Engines -- 3.3.4.1 NITROGEN OXIDES -- 3.3.4.2 SOOT -- Definitions, Acronyms, and Abbreviations -- References -- CHAPTER 4 Compressor and Turbine as Boundary Conditions for 1D Simulations -- 4.1 Requirements for 1D Simulation Boundary Conditions -- 4.2 General Principles of Physical Modelling of Turbomachinery and Positive Displacement Machines -- 4.2.1 Basic Equations -- 4.2.2 Mean Value of Rothalpy andCentrifugal Force at Central Streamline -- 4.2.3 Transformations between Rotating Impeller and Stator or between Cartesian and Cylindrical Coordinates -- 4.2.3.1 TRANSFORMATION OF TOTAL STATES BETWEEN IMPELLER AND STATOR -- 4.2.3.2 GEOMETRICAL TRANSFORMATION OF BLADE CASCADES -- 4.2.4 Loss Coefficients in CompressibleFluid Flow -- 4.3 Radial-Axial Centripetal Turbine -- 4.3.1 0D Map-Based Models -- 4.3.2 Central Streamline Models of a Radial Turbine -- 4.3.3 Central Streamline Model using Quasi-Steady Impeller Flow -- 4.3.4 Unsteady-Flow 1D Turbine Model -- 4.3.5 Model Structure -- 4.3.6 Calibration Procedure for a Model -- 4.3.7 Heat Exchange Parameters of a Physical Turbine Model -- 4.3.8 Other Layouts of Radial Turbines -- 4.3.9 3D CFD Models -- 4.4 Speed Non-uniformity of an Impeller and Friction Losses -- 4.5 Centrifugal Compressor -- 4.5.1 0D Models of a Compressor -- 4.5.2 Physical 1D Central Streamline Model of a High-Pressure Ratio Centrifugal Compressor -- 4.5.3 Geometry of Flow in Radial Compressor -- 4.5.4 Total and Static States with Transonic Limits and Kinetic Energy Losses -- 4.5.5.1 GEOMETRY OF AXIAL PROFILE CASCADE -- 4.5.5.2 HOWELL THEORY OF COMPRESSOR BLADE CASCADES -- 4.5.5.3 FORCES IN A BLADE CASCADE -- 4.5.5 Generalization of Results for Axial Blade Cascade -- 4.5.5.1 GEOMETRY OF AXIAL PROFILE CASCADE -- 4.5.5.2 HOWELL THEORY OF COMPRESSOR BLADE CASCADES -- 4.5.5.3 FORCES IN A BLADE CASCADE. 001408967 5058_ $$a4.5.6 Application of Profile Blade Cascade Theory to Compressor Components -- 4.5.6.1 IMPELLER INDUCER -- 4.5.6.2 BLADED DIFFUSER -- 4.5.6.3 VANELESS DIFFUSER -- 4.5.6.4 TRANSONIC PERFORMANCE -- 4.5.7 Compressor Performance Parameters -- 4.6 Positive Displacement Compressor -- 4.7 Conclusions -- Acknowledgments -- Definitions, Acronyms, and Abbreviations -- References -- CHAPTER 5 3D-CFD Combustion Models for SI and CI Engines -- 5.1 Introduction to CFD Simulation of In-Cylinder Flows -- 5.2 The Finite Volume Method Applied to Simulation of IC Engines -- 5.2.1 Mesh Generation and Management -- 5.2.2 Discretization -- 5.2.3 Solution of the System of Algebraic Equations -- 5.2.4 Influence of Discretization on the Computed Results -- 5.2.5 Segregated Approach for Equation Solution -- 5.3 Turbulence Modeling -- 5.3.1 RANS -- 5.3.2 LES -- 5.4 Modeling Spray Evolution -- 5.4.1 The Eulerian-Lagrangian Approach -- 5.4.2 Spray Simulations for GDI Engines -- 5.4.3 Diesel Sprays -- 5.5 Turbulent Reacting Flows: An Overview -- 5.6 Combustion in Diesel Engines -- 5.6.1 The Characteristic Time-Scale Combustion (CTC) Model -- 5.6.2 Multiple Representative Interactive Flamelet Model (mRIF) -- 5.6.3 Light-Duty Engines -- 5.6.4 Sandia Optical Engine for Heavy-Duty Applications -- 5.6.5 Heavy-Duty Engines -- 5.6.5.1 MARINE ENGINES -- 5.7 Combustion in Spark Ignition (SI)Engines -- 5.7.1 Ignition Modeling -- 5.7.2 Flame Propagation Modeling -- 5.7.3 Examples of Applications -- 5.7.3.1 CMC PREMIXED -- Abbreviations -- References -- CHAPTER 6 Control-Oriented Gas Dynamic Simulation via Model Order Reduction -- 6.1 Introduction and Motivations -- 6.2 Model Order Reduction -- 6.3 Model Order Reduction of 1D Gas Dynamic Equations via Polynomial Approximation -- 6.3.1 Polynomial Spatial Basis Functions -- 6.3.1.1 PIECEWISE-CONSTANT SBF -- 6.3.1.2 QUADRATIC SBF. 001408967 5058_ $$a6.4 Modeling of the Boundary Conditions -- 6.4.1 Boundary Conditions for Open-Ended Pipes -- 6.4.1.1 MODELING PIPE INFLOW WITH ISENTROPIC ASSUMPTION -- 6.4.1.2 MODELING PIPE OUTFLOW WITH ISOBARIC ASSUMPTION -- 6.4.2 Boundary Conditions for Valves and Restrictions -- 6.4.3 Boundary Conditions for Manifolds and Volumes -- 6.5 Application to the Shock Tube Problem -- 6.6 Control-Oriented Modeling of Wave Action in Turbocharged SI Engine -- 6.6.1 Overview of Model Equations -- 6.6.2 Results and Discussion -- 6.7 Summary -- Definitions, Acronyms, and Abbreviations -- References -- CHAPTER 7 Modeling of EGR Systems -- 7.1 Introduction -- 7.2 Modeling of EGR System -- 7.3 Modeling EGR Mixing and Cylinder-to-Cylinder Dispersion -- 7.3.1 1D Simulations -- 7.3.2 1D-3D (Non-Coupled) Simulations -- 7.3.3 1D-3D (Coupled) Co-simulations -- 7.4 Modeling Generation of Condensates in Low-Pressure Applications -- 7.4.1 Condensation in LP EGR Cooler during Engine Warm-Up -- 7.4.2 Condensation in the Fresh Air/LP EGR Junction -- 7.5 EGR Cooler Fouling -- 7.5.1 Fouling Deposition -- 7.5.2 Removal Mechanisms -- 7.6 EGR Transport and Control in Transient Operation -- 7.6.1 EGR Control in Steady Operation -- 7.6.2 Tip-In from Low to Full Load -- 7.6.3 Tip-Out from Full to Low Load -- 7.6.4 Tip-In from Low to Partial Load -- 7.6.5 Summary on Transient Modeling -- 7.6.6 Numerical Diffusion -- 7.7 Conclusion -- Definitions, Acronyms and Abbreviations -- References -- CHAPTER 8 1D Engine Model in XiL Application: ASimulation Environment for the EntirePowertrain Development Process -- 8.1 Introduction -- 8.2 XiL Simulations -- 8.2.1 Advantages for the Development Process -- 8.2.2 Tools -- 8.2.2.1 THE FUNCTIONAL MOCK-UP INTERFACE (FMI) -- 8.2.2.2 DISTRIBUTED CO-SIMULATION PROTOCOL (DCP) -- 8.3 Engine Simulations in the Virtualized Development Process. 001408967 5058_ $$a8.4 1D Engine Models in XiL Simulations. 001408967 506__ $$aAccess limited to authorized users. 001408967 588__ $$aDescription based on publisher supplied metadata and other sources. 001408967 655_0 $$aElectronic books 001408967 7001_ $$aMontenegro, Gianluca. 001408967 77608 $$iPrint version:$$aOnorati, Angelo$$t1D and Multi-D Modeling Techniques for IC Engine Simulation$$dWarrendale : SAE International,c2020$$z9780768093520 001408967 852__ $$bebk 001408967 85640 $$3ProQuest Ebook Central Academic Complete $$uhttps://univsouthin.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/usiricelib-ebooks/detail.action?docID=28983827$$zOnline Access 001408967 909CO $$ooai:library.usi.edu:1408967$$pGLOBAL_SET 001408967 980__ $$aBIB 001408967 980__ $$aEBOOK 001408967 982__ $$aEbook 001408967 983__ $$aOnline