
University of Southern Indiana
Pott College of Science, Engineering, and Education

Engineering Department

8600 University Boulevard
Evansville, Indiana 47712

Electroencephalogram Controlled Electric Wheelchair

Nicole Matthews & Andrew McClain
ENGR 491 – Senior Design

Fall 2021

Approved by:
 Faculty Advisor: Arthur Chlebowski, Ph.D. Date

Approved by:
 Department Chair: Paul Kuban, Ph.D. Date

i

ACKNOWLEDGEMENTS

In this section, we would like to acknowledge Dr. Arthur Chlebowski for advising us through this

process and our families for all their support and encouragement.

ii

ABSTRACT

The purpose of this project was to create an alternative method to control an electric wheelchair

using an electroencephalogram (EEG). The primary goal of this project was for an EEG to

collect data and transmit it wirelessly via Bluetooth to a microcontroller on board the wheelchair.

This data is then processed and used to control the motor functions of the wheelchair.

The EEG headset used in this project was the Unicorn Hybrid Black. This headset has eight data

electrodes as well as two reference electrodes. Multiple microcontrollers were analyzed to

determine the best fit for this project with the nRF52840 chip on the PCA10056 development kit

ultimately being selected. Matlab and Simulink were used to receive and process the signal from

the EEG headset. Then the logic to create the signal for the wheelchair motors and emergency

brake controls was designed and loaded to the microcontroller onboard the wheelchair.

The final system uses the EEG headset to collect data that is processed through a computer and

outputs a signal to an Arduino that is connected to one nRF52 microcontroller which then

transmits that signal via Bluetooth to the nRF52 microcontroller onboard the wheelchair.

iii

TABLE OF CONTENTS

Acknowledgements .. i

Abstract .. ii

Table of Figures.. iv

Electroencephalogram Controlled Electric Wheelchair ... 1

1 Introduction .. 1

2 Project Background ... 2

3 System Design ... 3

4 EEG headset ... 5

4.1 Testing ... 5

4.2 Analysis ... 7

4.3 MatLab From Simulink for Control .. 15

4.4 Output To Microcomputer .. 17

5 Microcomputer ... 18

5.1 Code Structure ... 18

5.2 Nordic S140 SoftDevice.. 22

6 Wheelchair .. 26

6.1 Electronics Organization ... 27

6.2 Controller .. 28

6.3 Batteries... 28

6.4 Motor Drivers .. 28

6.5 Motors ... 29

7 Considerations .. 30

7.1 Major Considerations in Design .. 30

7.2 Other considerations .. 31

8 Conclusion and Recommendations .. 32

References .. 34

APPENDIX .. 37

iv

TABLE OF FIGURES

Figure 1: Types of Paralysis in United Stated ... 1

Figure 2: Joystick Controller ... 2

Figure 3: Low Level System Architecture. ... 3

Figure 4: Modified block diagram to illustrate the subsystems designed individually. 4

Figure 5: Profile View of Unicorn Hybrid Black Headset .. 5

Figure 6: Unicorn Suite EEG Sample. ... 6

Figure 7: Comma Separated Value File View in Excel for 20 Data Points 7

Figure 8: Excel Graph of One Stimulus Response and Baseline Period .. 8

Figure 9: Electrode Locations in 2-Dimensions. ... 9

Figure 10: Photos of Headset Cap with Electrode Location (Profile and Front Views).............. 10

Figure 11: Heat Map for 5 Second Intervals. ... 10

Figure 12: Simulink Raw Data. ... 13

Figure 13: Simulink Raw Data Output. .. 14

Figure 14: Simulink Arduino Output ... 15

Figure 15: Arduino Output for LED Control ... 15

Figure 16: Simulink Data Out to MatLab .. 16

Figure 17: Data processing and Arduino Control through MatLab ... 17

Figure 18: Flow Chart for Collecting and Processing Data in MatLab 17

Figure 19: PWM signal generated on nRF51 microcontroller... 19

Figure 20: Microcontroller flowchart of motor operation. (To be updated for continuous input

for operation of motors) .. 20

Figure 21: PWM signal generated on nRF52 microcontroller... 21

Figure 22: Bluetooth Connection Flowchart.. 22

v

Figure 23: SoftDevice architecture. [8] ... 23

Figure 24: Four bits to control motor function in central device. In this example, bit two is on

and the wheelchair would turn left. ... 26

Figure 25: Wheelchair Control System ... 27

Figure 26: Before (left) and After (right) photos of the wiring of the wheelchair....................... 28

Figure 27: Motor Drivers (outlined in green) .. 29

Figure 28: Wheelchair Motors (outlined in green) .. 30

Figure 29: Final Design Block Diagram .. 33

1

ELECTROENCEPHALOGRAM CONTROLLED ELECTRIC

WHEELCHAIR

1 INTRODUCTION

According to the National Spinal Cord Injury Statistical Center, there are currently

approximately 294,000 people in the United States with spinal cord injuries. That number is

increasing daily with about 18,000 new spinal cord injuries every year. Of these spinal cord

injuries, 12.3% of these injuries result in complete quadriplegia/tetraplegia, and the next 47.2%

resulting in incomplete quadriplegia/tetraplegia, see Figure 1. With incomplete quadriplegia,

some movement of the arms or legs may be possible, but it is limited. [1] Because of this, a large

portion of those with spinal cord injuries may need to use alternative control methods for an

electric wheelchair. These alternative control methods can give those suffering with this type of

injury a sense of independence that may otherwise not be possible.

Figure 1: Types of Paralysis in United Stated

This project was done to help those who may not have as much freedom of movement as they

would like. Increasing mobility options for people without many options can increase a person’s

quality of life significantly. This quality-of-life boost can lead to an overall increase in a person’s

welfare. People with quadriplegia or multiple amputations face very limited mobility options.

Electric wheelchairs are most commonly driven with a joystick to be controlled with the hand,

2

see Figure 2. When that is not possible due to lack of motor function in the hands, the options are

more limited. This project gives another method of controlling a wheelchair, using brain signals.

Figure 2: Joystick Controller

An electroencephalogram (EEG) was used to collect brain signals and drive a wheelchair. With

the idea in mind that the user has very limited motor functions, every function was designed to

be controlled via the EEG headset. This includes turning the system ON and OFF with a series of

eye blinks and driving the motors based on the very specific input from select electrodes.

2 PROJECT BACKGROUND

This project is the continuation of another design team’s project. That team used the Unicorn

Hybrid Black headset to transmit data to a laptop computer that was running MatLab Simulink.

The data was processed there, and the signal to drive the motors was connected serially to an

Arduino Uno which sent a signal to the motor drivers powering the motors. [2]

3

The steps taken in the current project aim make the system wireless. The system designed in this

project would ideally only include the headset and one microcontroller to collect the data and

output the appropriate drive signals.

3 SYSTEM DESIGN

The main system can be broken down into two main systems as shown in Figure 3. The EEG

headset collects information from brain waves and transmits the information wirelessly. The

wheelchair subsystem receives and analyzes the transmission then initiates the wheelchair

movement by powering the correct motors in the appropriate direction.

Figure 3: Low Level System Architecture.

Designing the system to operate in the manner described above was a very complex and could

more easily be accomplished by first breaking those systems into smaller subsystems, which

could be changed in the future to reach the end goal of a fully embedded system. This modified

block diagram can be seen in Figure 4. The system has been broken down into three subsystems

called A, B, and C.

4

Figure 4: Modified block diagram to illustrate the subsystems designed individually.

With this modified system, the first subsystem is section A, where the EEG signal was processed

on a computer separate from the microcontroller on board the wheelchair. This signal is then

passed to an Arduino which outputs the appropriate wheelchair operation signal. The output pin

of the Arduino is physically connected to the button of a microcontroller that is located off the

wheelchair.

The second subsystem was the microcontroller-to-microcontroller Bluetooth connection labeled

section B. In this system, the microcontroller located off the wheelchair would connect to the

microcontroller on the wheelchair and send the drive information which was then processed and

used to turn on the appropriate motors on the wheelchair. This is discussed in more detail in

5.2.8.

The final subsystem is the control of the wheelchair and its motor functions from the

microcontroller on board the chair denoted as section C. The microcontroller needs to supply a

pulse width modulated signal to drive the motors as well as a direction to drive the motors in.

Beyond that, the microcontroller needs to turn the emergency brake on and off when the

wheelchair is ready to be driven.

5

4 EEG HEADSET

Several EEG headsets are commercially available. Many have similar features to the Unicorn

Hybrid Black and none were found to have significant enough advantages to justify purchasing a

different headset for this project. According to the Unicorn Hybrid Black User Manual, the

Unicorn Hybrid Black headset has eight data electrodes as well as two reference electrodes.

When the headset receives a start acquisition command, it begins to transmit a 45-byte signal

with the battery life, electrode data, accelerometer, gyroscope, and counter data. This signal is

transmitted at a frequency of 250 Hz. [3] A profile view of the headset being worn can be seen in

Figure 5. This data collected by the headset was used to control the operations of the motors on

the wheelchair.

Figure 5: Profile View of Unicorn Hybrid Black Headset

4.1 TESTING

Testing needed to be done to determine how the data would be output from the headset. A timed

trial was the next step to see if there were identifiable responses to stimuli. Together these tests

provide a good data set to analyze.

4.1.1 Initial Testing

Following instructions provided on the Unicorn website the headset was connected to the

Unicorn Suite software. Several initial tests were run to determine what type of information is

provided by the software. During a test the headset was turned on and different options within

the software were utilized. Pressing the play button displays a signal from the EEG. An example

of this can be seen in Figure 6. There is also a visual display for the electrodes that turn from

yellow to green when there is a good signal. It was noted in the information material that it can

take up to a couple minutes for the signals to normalize. [3] When pressing the record button, the

6

same information is available on the display and when the recording is stopped a comma-

separated-value (.csv) file is saved with data for each electrode as well as data for the gyroscope,

accelerometer, and counter.

Figure 6: Unicorn Suite EEG Sample.

4.1.2 First Trials

To help with determining how to process the data and determine what to use for triggering

moving and stopping events, an initial series of tests was completed. Data was collected from

one subject. The test procedure was discussed with the subject prior to beginning the test. The

subject was asked to relax during the initial stages of the test to allow the electrodes to get a good

signal and to provide a baseline. The subject was sitting with a relaxed posture, hands hanging at

sides and feet resting on the crossbar of a stool. For the first series of tests the subject kept his

eyes open and stared at a fixed point. The subject was given several tasks and asked to relax

between tasks. The tasks were described to the subject beforehand to allow for questions and to

give the subject time to think of needed responses. The tasks were as follows: curl left toes, curl

right toes, squeeze left index finger and thumb together, squeeze right index finger and thumb

together, clench teeth, think about your favorite food, think about eating something sour, think

about a time you were scared, think go left, think go right, think go straight, and think stop. The

subject chose a relaxing thought and returned to that thought between each task. This entire test

7

was repeated with the only change being the subject kept their eyes closed for the duration of the

test.

4.2 ANALYSIS

4.2.1 Excel

Initially the data in the .csv file format was viewed using Microsoft Excel. A sample of this

work data can be seen in Figure 7. Some basic graphs of specific sections of data were created to

visualize any potential responses to the stimuli in the initial trial. An example graph can be seen

in Figure 8. Each color in the graph represents data from a single electrode. The data begins

with the stimulus prompt being given, halfway through a relax prompt is given. Different

electrodes had higher values at different points but comparing results of several different stimuli

there were no consistent high points that could be used for control. With over 48000 rows of

data, it proved very difficult to scroll through and select specific data of interest, so the data was

loaded into Matrix Laboratory (MatLab) for further analysis.

Figure 7: Comma Separated Value File View in Excel for 20 Data Points

EEG 1 EEG 2 EEG 3 EEG 4 EEG 5 EEG 6 EEG 7 EEG 8 Accelerometer X Accelerometer Y Accelerometer Z Gyroscope X Gyroscope Y Gyroscope Z Battery Level Counter Validation Indicator
34987.84 37400.89 -20529 -18152.7 41822.7 41989.75 22919.67 41345.49 -0.019 1.006 -0.01 0 0 0 73.333 1 1
138059.9 150779.7 -111642 -115377 163443.9 192327.2 28125.71 172705.8 -0.016 1.012 -0.017 0 0 0 73.333 2 1
172212.4 197329.9 -245756 -335303 174748.4 341803.9 -192100 261723.4 -0.014 1.014 -0.018 0 0 0 73.333 3 1
14996.48 26586.29 -260775 -577549 -151156 285678.6 -573500 138729.7 -0.018 1.014 -0.02 0 0 0 73.333 4 1

-79068 -128166 -75669.5 -612547 -560576 117665.3 -557463 -54783.2 -0.017 1.013 -0.022 0 0 0 73.333 5 1
147519.5 26272.32 169717.7 -325547 -594018 92350.04 13167.84 -73752.1 -0.017 1.01 -0.023 6.104 -4.822 -3.784 73.333 6 1
480586.8 353977.8 309142.7 101530.7 -239407 216866 575461.3 116220.3 -0.019 1.009 -0.025 3.204 1.373 -1.556 73.333 7 1
614776.4 563697.1 315337.7 375782.2 180445 361146.6 750851.9 400358 -0.02 1.01 -0.025 2.747 2.838 -1.19 73.333 8 1
558956.4 581527.8 257523.4 406622.7 458596.1 472692.8 654773.7 592946.1 -0.017 1.009 -0.025 2.563 3.387 -1.007 73.333 9 1

452352 487289.1 219996.6 324006.7 561085.2 516645.8 495191.7 578342.5 -0.016 1.007 -0.025 2.533 3.51 -0.702 73.333 10 1
386836.8 397628.2 236059.2 281394.4 532251.7 480364.4 435075.6 462733.2 -0.011 1.004 -0.027 2.625 3.479 -0.519 73.333 11 1
413816.8 405452.7 260729.6 333176.2 500887.9 445632.8 523590.5 418136.5 -0.01 1.006 -0.031 2.808 3.448 -0.336 73.333 12 1
476004.9 469968.3 241331.8 414546.2 539689.5 462287.2 594080.8 456288.3 -0.012 1.007 -0.029 2.899 3.387 -0.153 73.333 13 1

447688 459054.3 200770.6 422469.9 542108.1 443968.9 487527.9 465351.5 -0.01 1.008 -0.031 2.991 3.357 -0.092 73.333 14 1
341164.4 360619.7 195689.1 364428.5 437700.8 328736.9 313262.3 384189.4 -0.011 1.007 -0.031 3.113 3.265 -0.061 73.333 15 1
281696.1 288986.9 217937.8 336875.9 333054.9 198161.7 253665.7 263146.6 -0.01 1.007 -0.032 3.174 3.143 -0.183 73.333 16 1
267433.9 265395.7 213037 357149.3 295078.2 129189.3 249659.8 172198.1 -0.008 1.004 -0.031 3.235 3.113 -0.214 73.333 17 1
179305.7 188985.9 178828.6 356849.5 231135.3 74437.6 138765.9 107554.1 -0.008 1.005 -0.03 3.418 3.204 -0.183 73.333 18 1
22770.62 45116.84 164891.4 318779 95511.79 -11242 -18879 33253.96 -0.009 1.006 -0.031 3.54 3.204 -0.397 73.333 19 1
-56049.8 -42611.2 180672.3 295668.8 5712.163 -68928.9 -41473.9 -30751.3 -0.01 1.009 -0.034 3.693 3.082 -0.458 73.333 20 1

8

Figure 8: Excel Graph of One Stimulus Response and Baseline Period

4.2.2 MATLAB

MatLab is an excellent program for manipulating large arrays of data. It was possible to upload

the data from the .csv file and graph the electrode frequencies over specific periods of time to see

if there were any noticeable reactions to stimuli. While the responses to different stimuli did

vary from one another, the differences were not enough to be able to write a program to

recognize a certain event as a trigger for wheelchair movement. It was noted that physical

movement caused more noise in EEG channels than thinking about different things did.

The next idea was to look at which area of the brain was most active as a result of the different

stimuli instead of looking at changes in frequency of each electrode individually. To accomplish

this the distance between electrodes was measured in two-dimensional space with electrode 3

being assumed to be at the origin point. The locations of the other electrodes in reference to the

origin were measured in inches. The resulting values can be seen in Figure 9. The graph shows

the approximate placement of each electrode. Electrodes 1, 3, 5 and 7 run along the midline of

the skull from the top of the head to the base of the skull. Electrodes 2 and 6 are on the left side

of the head while electrodes 4 and 8 are on the right side. As can be seen in the photos of a

person wearing the headset in Figure 10, all the electrodes are located closer to the rear portion

of the head. The locations were added to the data in MatLab. The frequency amplitude data for

9

each electrode was multiplied by the x and y locations for the corresponding electrode. The data

from all eight of the electrodes multiplied with the x-locations was averaged to calculate a single

x-location that would have the highest frequency and the same was done with the data multiplied

by the y-locations. This resulted in a single x-y coordinate for the set of data captured by one

point in time. The plot function was used in MatLab to plot the coordinates over 5 second

sections of time to see if any distinct areas were stimulated based on some of the given stimuli.

Figure 11 shows several of these plots with the movement left or right depicted on the x-axis and

the movement front to back depicted along the y-axis. It is noted that there was more movement

front to back than left to right but overall, no specific area of activation was seen for any one

stimulus. In order, the stimuli depicted in these plots are rest, left toes curl, rest, right toes curl,

rest. Ideally, some of the non-rest stimuli would produce a dense area somewhere other than the

center of the graph, but the densest area for each sample would still be near the center of the of

the region. At this point the decision was made to utilize a program called EEGLab that works

with MatLab and offers advanced filtering and visualization options for interpreting EEGs.

Figure 9: Electrode Locations in 2-Dimensions.

10

Figure 10: Photos of Headset Cap with Electrode Location (Profile and Front Views).

Figure 11: Heat Map for 5 Second Intervals.

4.2.3 EEGLab

EEGlab provides tutorials to guide users though the initial setup and basic use of the product.

The recommended steps from The EEGLAB Wiki Tutorial were followed as described below.

Electrode 1

Electrode 1

Electrode 3

Electrode 4

Electrode 5

Electrode 7

Electrode 8

11

Installing EEGLAB – The program was downloaded and run in MatLab as described. The

program uses a command in MatLab to open a graphical user interface (GUI). The GUI can be

used to accomplish the additional steps.

Quickstart – This step was only used to familiarize the user with some of the basic functionality

of the program such as accessing datasets and scrolling through the data plot.

Dataset Management - This step covered how to save modify and delete datasets which becomes

important when using the preprocessing steps.

Import Data - There were several types of data that needed to be imported to view the data. The

continuous data was contained in the .csv file that was uploaded to MatLab. The data needed to

be transposed for the program to correctly recognize the eight channels. Event data was also

imported to show when stimuli were introduced and when rest periods occurred. Standard

locations of a 10-20 electrode configuration, the configuration used for the Unicorn Hybrid

Black were available with EEGLab. The included electrodes were selected based off data

provided by unicorn and the three-dimensional location information for each electrode was

added.

Preprocess data - This step included filtering, re-referencing and resampling the data. The data

was filtered as recommended, but did not need to be re-referenced as the Unicorn Hybrid Black

has two reference electrodes. Resampling was not used as the sampling rate was already in the

desired range.

Reject Artifacts - This step is used to find and get rid of bad channels and data. Through the

analysis it was found that Channel 6 had much more noise than any of the other channels and

would likely need removed if the data was to be used. There were no distinct sections of bad

data identified by the researchers.

Extract Data Epochs - Data Epochs are used to look specific data based on time of event. For the

purpose of this test looking at data from 2-3 seconds after a stimulus seemed to be a reasonable

window to determine if there was any identifiable response to the stimulus.

Plot Data - This was the last step completed by the researchers in the project. Data was viewed

as frequency over time through the scroll options and as a power spectrum. [4]

12

This program includes many more advanced options than were able to be explored as a part of

this project. This program could prove very useful in the future if many more trials were

completed with the same stimulus repeated numerous times to find trends. The program also has

options for studies for multiple subjects. With the constraints of this project, it was determined

that a distinct, recognizable, and repeatable method of controlling the wheelchair would not be

easy to identify and transfer to a microcontroller.

4.2.4 Methods to Control Using EEG signals

Additional research was done to see how other people were using EEG signals to control

functions. Some commonalities were identified. Most of the projects utilized EEG equipment

with included functions for attentiveness or something similar and used these functions are

triggers to control the projects. [5] One project used a Neurosky chip that “amplifies and pre-

processes the incoming neural data, outputting real-time estimated levels of attention, of

relaxation, and frequency band power, using custom algorithms.” [6] Another researcher used a

Cyton Biosensing Board. [7]

Some projects utilized eye-blinks as a good solid indicator for control. [8] The placement of

electrodes on the Unicorn Hybrid Black is not ideal for picking up eye-blinks, so three electrodes

were removed from the cap and placed near the eyes, one on each temple and one in the center of

the forehead.

Many projects also utilized a laptop or smartphone for receiving, processing and/or transmitting

their data. [5] [8] [9] A previous senior design team used the Simulink add-on for the Unicorn to

collect and filter data from the headset. [2] The decision was made to investigate using Simulink

to receive, process and transmit data for this project.

4.2.5 Simulink

The senior design team previously working on this project used the Simulink add-on for the

Unicorn Hybrid Black and an Arduino UNO to control the motion of the wheels. [2] The

decision was made to build off that work. Figure 12 shows the Simulink setup using a 60Hz

notch filter and a Bandpass filter from 15 to 30Hz. The notch filter helps to eliminate noise from

the electrical system. Using a Bandpass filter in this range helps to isolate Beta waves that occur

when a person is alert or active. Using a moving average helps to eliminate false positives that

might be caused by movement or noise but averaging the EEG data that included positive and

13

negative values basically removed all the artifacts of interest. To eliminate this problem and

increase the amplitude of the artifacts, the data was squared before putting it through a moving

average. A function was added to look at the three electrodes of interest. Figure 13 show how

the raw data appears. The yellow box is the response from a single hard blink with both eyes.

This large amplitude was consistent for single blinks. After several trials it was determined that

a single electrode in the center of the forehead could produce a consistent artifact when a hard

blink occurred.

Figure 12: Simulink Raw Data.

14

Figure 13: Simulink Raw Data Output.

The next test was to see if the filtered signal could be used as a means of control. The Arduino

UNO was connected to Simulink. A function was written to send a high signal if the electrode

amplitude was above a threshold level and a low otherwise. A single LED on a breadboard was

connected to a PIN on the Arduino. A digital output was used to send to signal through the

Arduino lighting the LED if a high signal was received. The modified Simulink setup can be

seen in Figure 14. When the program was run, the LED lit up immediately. This was to be

expected as the EEG signals start out large before they have time to normalize. After a short

time, the LED went off. With a hard blink the LED lit up again for a short time. The LED setup

with the LED lit up can be seen in Figure 15. When viewing the output of the control function

the blinks were regularly identified but movement was not. This indicates that this should be a

good way to control a function. A difficulty with using the Arduino is that the digital output

does not occur in real time. This creates larger and larger lag between when the blink occurs and

when the LED lights up. Several other output types including serial and servo were considered as

potential alternatives to the digital output. None of the alternatives worked to create a close to

real time output of the control information.

15

Figure 14: Simulink Arduino Output

Figure 15: Arduino Output for LED Control

4.3 MATLAB FROM SIMULINK FOR CONTROL

The earlier work processing data in MabLab revealed that there was very little lag even

processing large amounts of data while working in MatLab. This led researchers to consider the

16

possibility of sending the data from Simulink to MatLab for writing the control function and

sending the data to the Arduino. There is a simout block in Simulink that can be used for this

purpose. As can be seen in Figure 16, the simout block was used to replace the control function

and the Arduino Digital Out that were used in Figure 14. The Arduino was initiated in MatLab

and a script written to accomplish the steps in Figure 17. A detailed flow chart of the logic for

the script can be seen in Figure 18 and the code can be found in Appendix E. The code starts the

simulation and waits for 2 seconds while Simulink collects data then pauses the simulation so

that data becomes available in MatLab. That data is then averaged over a short amount of time

and compared to an experimentally developed threshold to determine if there was significant

enough activity to turn on the light, or eventually the motor. If the threshold is met or exceeded

the light or motor turn on, if not the light or motor is turned off. Then more data is processed.

When all data has been processed the simulation is restarted for another two seconds to collect

more data and the process is repeated. This allowed for much closer to real time response and

kept the system from getting so behind that it could no longer process. Additional testing could

help determine optimal numbers of data points to average and how long to collect data to get

even closer to real time results.

Figure 16: Simulink Data Out to MatLab

17

Figure 17: Data processing and Arduino Control through MatLab

Figure 18: Flow Chart for Collecting and Processing Data in MatLab

4.4 OUTPUT TO MICROCOMPUTER

Once an LED was consistently lit with a blink as shown in Figure 15, the wire connecting the

Arduino the LED was instead used to connect the Arduino to a button being pressed on the

Bluetooth transmitter to move the wheelchair forward.

18

5 MICROCOMPUTER

5.1 CODE STRUCTURE

The code to operate the microcontrollers consists of two subsystems. The first being the

information that will be used to physically control the motor functions of the wheelchair, and the

second being the Bluetooth connection between the two boards. Each of these subsystems are

built using functions to initialize the different components of the systems. All these functions are

then initialized in the main program and runs in an idle state while waiting for interrupts to start

execution. The main code can be seen in Appendix C and Appendix D.

The signal being received on the microcontroller onboard the wheelchair is an 8-bit word, that is

used to control the four motor functions of the wheelchair. Using conditional statements, one

command will operate the corresponding motors when necessary.

The Bluetooth connection of the two microcontrollers is an adaptation of the Blinky example that

is provided in the software development kit provided by Nordic Semiconductor. This program is

designed to connect a designated peripheral microcontroller to a specific central microcontroller

based on the connection parameters (primarily the name of the devices) being met.

5.1.1 Acceleration Control

Smoother transitions between stop and full speed need to be incorporated into the system in

future iterations. The current setup of the system takes the wheelchair from a stop position

directly to full speed without any ramp up of speed. This can lead to jarring and injury of

passengers. This is a very important aspect of future design iterations.

5.1.2 Pulse Width Modulation

The first iteration of motor controls was done on the nRF51 microcontroller. This board did not

have a preprogrammed pulse width modulated (PWM) signal peripheral. Because a PWM signal

was required to drive the motors, this signal had to be created using hardware shorts and the

timers on the microcontroller. The PWM signal was created by turning the output of a pin on and

off at a rate of 1kHz.

The timer and the general-purpose input/output tasks and events (GPIOTE) peripherals were

used to create the PWM signal. The timer runs on an 8MHz clock and has an event at 8000 clock

19

cycles, which is at 1ms. The calculation for the speed of the signal can be seen in Equation 1.

This is the basis for the 1kHz signal.

𝑆𝑖𝑔𝑛𝑎𝑙 =
𝐶𝑙𝑜𝑐𝑘 𝑆𝑝𝑒𝑒𝑑

𝐶𝑎𝑝𝑡𝑢𝑟𝑒/𝐶𝑜𝑚𝑝𝑎𝑟𝑒 𝐸𝑣𝑒𝑛𝑡

Equation 1: Calculating the speed of the PWM signal.

Setting the duty cycle of the PWM signal is a matter of when to turn the signal to the off position

within each cycle of the PWM signal. This was accomplished using a capture/compare register to

designate when that signal is set to zero. For a 50% duty cycle, the signal would be turned off at

4000 clock cycles. This signal can be seen measured on an oscilloscope in Figure 19.

Figure 19: PWM signal generated on nRF51 microcontroller.

To correctly turn the motors off, the duty cycle of the PWM signal had to be set to zero. This is

done by changing the output of the pin to zero for all time. This was accomplished by checking

for a stop signal while the PWM signal was on a low cycle. This had to be checked in this

20

manner because if it stopped the timer on a high cycle rather than the low cycle, the duty cycle

would be set to 100% instead of 0% and the wheelchair would drive out of control. This can be

seen in Figure 20 in the timer interrupts. If the stop command is not given, the wheelchair will

resume driving in the same direction that it was driving.

Figure 20: Microcontroller flowchart of motor operation. (To be updated for continuous input

for operation of motors)

21

With the newer nRF52 microcontroller, an onboard PWM peripheral was ready to be used. This

peripheral made it much easier to change the duty cycle. This peripheral is made to change the

duty cycle without the user needing to check the current state of the signal to ensure it is in the

correct state. The resulting PWM signal from this peripheral can be seen in Figure 21 and can be

compared to the signal produced by the nRF51.

Figure 21: PWM signal generated on nRF52 microcontroller.

5.1.3 Navigation

The program was written so that the microcontroller stays in the low-power wait-for-interrupt

mode until it is given an input. With the nRF51 microcontroller, the system was designed with a

serial input from the universal asynchronous receiver/transmitter (UART). This input was UP,

DOWN, LEFT, or RIGHT. When an interrupt occurs on the UART peripheral the signal is read,

22

and the corresponding motors are started to drive the wheelchair in that direction. This can be

seen in Figure 20.

In the updated system on the nRF52 microcontroller, the UART was removed and instead the

inputs were transmitted wirelessly via the Bluetooth connection to another nRF52

microcontroller.

5.2 NORDIC S140 SOFTDEVICE

The Nordic SoftDevices are precompiled binary files which are included for ease of use in

setting up the Bluetooth stack while working with the software development kit. The SoftDevice

programmed to the NRF52840 was the S140. This file enables the board to act in a central or a

peripheral role with up to 20 roles. A basic diagram showing how this connection is established

and operates can be seen in Figure 22.

Figure 22: Bluetooth Connection Flowchart.

This leaves the flexibility to add further sensors which can control the wheelchair wirelessly.

Some opportunities to implement these sensors would be proximity sensors to ensure no

23

collisions can take place, as well as cliff sensors to scan the path for obstacles such as curbs or

stairs. Further, more human sensors could be applied to the system. Specialized EMG sensors

could be implemented to measure facial or other muscular movement for further control. The

Bluetooth system architecture can be seen in Figure 23.

Figure 23: SoftDevice architecture. [10]

The Bluetooth 5.1 specification that this SoftDevice adheres to contains support for LE Data

Packet Length Extension.

5.2.1 Physical Layer (PHY)

The physical layer in the Bluetooth 5.1 protocol stack enables the Bluetooth to operate in one of

three ways. The first is Bluetooth LE 1M. This method of connection offers data exchange rates

24

of 1Mbps (mega bit per second) and was introduced in Bluetooth 4.0. The second method of

connection, LE 2M, offers data exchange rates of 2Mbps. Devices created before the appearance

of LE 2M require that the Bluetooth specification continue to support these devices connected

via the LE 1M specification. The final method of connection, 4x range, increases the device’s

ability to successfully transmit data over longer distances. [11]

All three of these options continue to serve specific purposes. As the amount of data being

transmitted increases, the range that it can be transmitted decreases. Using the Host Controller

Interface, the data to be transmitted at a given time may be changed from one method of

connection to another. For example, a device may be advertising a certain signal at long range,

but when a device connects with it, it may switch to a short-range, high bit rate data transfer.

The EEG headset has a data payload of 44 bytes per data packet. The headset takes and sends a

reading at 250Hz. This gives a data rate of 88kbps, which is easily achievable with any of the

Bluetooth connections described in this specification. The primary reason to switch to the

upgraded NRF52 series chip is the LE Data Packet Length Extension. This allows the chip to

send data packets up to 255 bytes in length per cycle, while the previous Bluetooth versions and

thus previous chips, only supported data packets that are 20 bytes or fewer. The same goal could

be accomplished with this chip but would require sending 3 packets per data set. The first packet

being 20 bytes, the second packet being 20 bytes, and the final packet would contain four bytes.

With the current NRF52 series chips, all 44 bytes of data can be sent in one packet.

5.2.2 Link Layer (LL)

This layer is where the type of connection is defined. How two or more devices are going to

connect and/or communicate with each other will be defined here as master/slave or

central/peripheral. [12]

This layer also controls the algorithm with which the devices will be changing frequencies while

communicating. Because Bluetooth operates between 2.40 GHz and 2.48 GHz, there are only 40

available 2 MHz channels to be selected. In areas with high RF traffic, devices would quickly

run out of empty channels to use for data transmission and would therefore be required to operate

on the same channel as other unrelated devices. With these channel selection algorithms, the

connected devices will have a chosen path that is determined only within that network. These

devices will then change between channels at the same time as all other devices in that network.

25

This enables multiple devices to operate in the same area without the concern of data being lost

or jumbled. [12]

The algorithm used for frequency hopping has been updated in Bluetooth 5.0 to the channel

selection algorithm #2. The first algorithm for frequency hopping switched between one of 12

patterns. This new algorithm has switched to a pseudo random path through the optional

frequencies which yields a much larger number of frequency patterns. [11]

5.2.3 Security Manager (SM)

This layer is where a link is set up between two or more devices. Here, encryption keys are

created exchanged and checked between the devices to ensure that only the correct data is

transferred. [12]

5.2.4 Logical Link Control Adaptation Layer (L2CAP)

The Logical Link Control Adaptation Layer is where the lower layers, physical and baseband,

communicates with the upper layers, profiles, and applications. One such function performed

here is packet segmentation and assembly.

5.2.5 Attribute Protocol (ATT)

The attribute protocol is where data is stored in a Bluetooth network. Pieces of information are

stored as attributes in the client and server ATT protocol. The ATT consists of four fields:

attribute type, attribute handle, attribute permissions, and attribute value. Attributes communicate

with each other to determine which data should be transmitted/received.

5.2.6 Generic Attribute Protocol (GATT)

The generic attribute protocol is where the primary data transfer is taking place in the Bluetooth

protocol. It is critical that this layer operate according to the Bluetooth Core Specification

because this is what enables Bluetooth compatible devices from all around the world to interact

with each other.

5.2.7 Generic Access Profile (GAP)

The generic access profile controls the connection functionality of a device. It uses the data from

other layers to control how the device will function including the device discovery, connection

modes, security, authentication, association models and service discovery. This is the basic

information that forms a functional Bluetooth device. [13]

26

5.2.8 Applications and Profiles

The current state of the project has the central device set up to include a characteristic for the

state of a button on the peripheral device. This characteristic uses the four least significant bits to

control the operations of the wheelchair. A diagram showing the location of the bits can be seen

in Figure 24.

Figure 24: Four bits to control motor function in central device. In this example, bit two is on

and the wheelchair would turn left.

Bit zero is the forward drive operation, bit one is the reverse operation, bit two is the left turn

operation, and bit three is the right turn operation. If all the bits are set to zero, the stop operation

is executed.

6 WHEELCHAIR

The wheelchair used in this project is the ActiveCare Medical, Medalist Power Wheelchair. This

wheelchair was donated to the University of Southern Indiana for the previous team’s project by

a local wheelchair repair company, Custom Cycle and Mobility. [2]

The control system that is initially installed on the wheelchair was a multi-directional joystick

which included acceleration and navigation control. A diagram of the control system can be seen

in Figure 25.

27

Figure 25: Wheelchair Control System. [14]

6.1 ELECTRONICS ORGANIZATION

Because this project began from the end point of another team’s project, there was a transitioning

period where the new team had to evaluate the current condition of the wheelchair. This included

a complete overhaul of the device layout as well as the wiring of each device. The original

design didn’t use proper cable management, and it would have been difficult to reassemble the

wheelchair in its condition. This was remedied with proper connectors and a more methodical

organization approach. This made it simpler to continually make small changes to the system

when testing new features. The before and after images can be seen in Figure 26.

28

Figure 26: Before (left) and After (right) photos of the wiring of the wheelchair.

6.2 CONTROLLER

For testing purposes, the Arduino Uno used by the previous team was replaced with a Nordic

NRF51 Development Board. The positioning of the new board can be seen in the after photo in

Figure 26. The board was programmed using C language and a test program was written using

the data received through the Universal Asynchronous Receiver Transmitter (UART) to enter

conditionals that control motor movement based on data received. The code for this can be

found in Appendix F.

6.3 BATTERIES

The wheelchair is powered by two 12 VDC x 36 Ah lead-acid batteries connected in series.

These used batteries donated by CenterPoint Energy.

6.4 MOTOR DRIVERS

The motor drivers used for the wheelchair motors are the MD20A by Cytron Technologies. The

location of the drivers on the wheelchair can be seen in Figure 27. These drivers are capable of

supply up to 20 A each, which is more than enough for the motors on this wheelchair. The motor

29

drivers are receiving the pulse width modulated signal from the microcontroller at approximately

3 V. This signal is then transferred to the 24 VDC from the batteries and sent to the motors.

Figure 27: Motor Drivers (outlined in green)

6.5 MOTORS

The motors on the wheelchair are 24 VDC. They are rated to operate at 320 W, and a no-load

speed of 4,600 RPM. The motor location on the wheelchair can been seen in Figure 28.

30

Figure 28: Wheelchair Motors (outlined in green)

7 CONSIDERATIONS

7.1 MAJOR CONSIDERATIONS IN DESIGN

Some considerations are more applicable to certain projects and this wheelchair system is no

exception. Because this product is a medical device, the main focus has been and always should

be on helping people, which is why public health, safety, and welfare are so important.

7.1.1 Public Health, Safety, and Welfare

The product must include features to protect the user. The features may include proximity

sensors to detect obstacle and stop the chair, system status indicators such as low battery

warnings, and a constant input requirement where the chair will only move when the user is

actively giving the signal to move.

7.1.2 Social and Cultural

This device aims to increase freedom of movement for individuals with extreme mobility

limitations. There will always be some level of risk that a product malfunction, even as simple

31

as a dead battery, could cause significant problems for these individuals who may have a difficult

time getting help if they have a product malfunction. Individual users would need to weigh any

potential for injury against the increased freedom of movement to determine if the product would

be a good fit for them. Many people with mobility issues use different types of assistive devices

such as canes, walkers, manual wheelchairs, joystick controlled electric wheelchairs, and

prosthetic devices. Increasing quality of life through freedom of movement seems to be an

important and well accepted goal in the medical community.

7.2 OTHER CONSIDERATIONS

7.2.1 Economic Considerations

This product will be very expensive to make. There is not likely to be a large demand meaning

the production costs will be high. If the wheelchair is proven to function well it is likely that

medical insurances would eventually cover at least part of the cost. While potentially expensive,

the improvement in quality of life for people who need to use this chair would be an enormous

benefit.

7.2.2 Environmental

The EEG controlled electric wheelchair is a very specialized product and as such will have a

much smaller consumer demand. While some components, such as batteries, may need replaced

the wheelchair itself should last for many years. Being able to use the product for many years

while producing fewer products than most other consumer goods mean the product will have less

negative impact on the environment than most consumer products.

7.2.3 Global/Political

This is a medical assistive device so it would have to get approval as a medical device. In the

United States the U.S. Food and Drug Administration (FDA) regulates medical devices. Other

countries are likely to have similar organizations to regulate their medical devices and the EEG

controlled wheelchair may need to be submitted for approval in each country where it is to be

distributed.

7.2.4 Teamwork

Multiple communication methods were explored early in the design process. The team can

communicate via phone calls, text, email and zoom. A shared OneDrive folder is used to store

all working documents for the projects so all team members can access the data whenever they

32

need to. An availability calendar was created, and meetings occurred several times a week for an

hour to two hours.

The tasks were divided among the team members to best fit individual strengths. Current tasks

were discussed and updated as needed. Division of labor was strongly encouraged for this

project, but with difficult concepts it would have been useful to have another person familiar

enough with the specific concept to be able to work together to sort out issues.

When differences of opinion occur between team members several conflict resolution techniques

are used. The team will discuss the pros and cons of each option. If time allows multiple

options may be tested to determine which option works best. If one team member wants to add

something additional to the project, they will be the one to develop the option and demonstrate

the superiority to the previous design. If all members agree the design change is an

improvement, the changes will be adopted. If not, the process may be repeated.

Overall, this team functioned very effectively with very few conflicts. Defining specific goals

early in the process and communicating problems as they occurred helped to keep team members

on track and working toward a common goal.

8 CONCLUSION AND RECOMMENDATIONS

The team was able to achieve the objective of wirelessly controlling an electric wheelchair using

EEG signals. All four directional control functions (forward, backward, left, and right) are

programmed onto the Bluetooth receiver. The functions turn on the appropriate motors in the

correct direction to achieve the desired directional movement determined by the input received

from the Bluetooth transmitter. With button presses on the Bluetooth transmitter all four

directional movements were completed with the wheelchair.

A single blink was used as a stimulus event to trigger the wheelchair to move forward. MatLab

was used to collect data from the headset through Simulink. It was averaged over a short time

and compared to a threshold to determine if the blink stimulus occurred. A value was sent to an

Arduino indicating if the threshold was met or not. A wired connection was used to connect the

Arduino to the Bluetooth transmitter and the value sent to the Arduino replaced the forward

button used in the earlier trials. This process allowed a blink to trigger the wheelchair to move

33

forward with the wheelchair stopping when the averages from the EEG data normalized to below

the threshold again. The complete modified system diagram can be seen in Figure 29.

Figure 29: Final Design Block Diagram

More complete study of the data transmitted by the EEG headset will need to be completed to

determine how the data is structured. Multiple tests will need to be completed to find stimuli that

produce specific, recognizable, repeatable responses. Once these stimuli are found they can be

used as direction indicators. Conditional statements can be used to trigger the directional control

functions on the microcontroller onboard the wheelchair. Ideally, the motors should stop if a

direction indicator is not present. The user should not have to send a signal to stop, the chair

should only move when the user is actively sending a signal to move. Speed control is also an

idea that needs further development. It would be helpful if the wheelchair would gradually

increase speed when a direction indicator is received and gradually decrease speed when the

direction indicator is no longer being received.

34

REFERENCES

[1] National Spinal Cord Injury Statistical Center, "Facts and Figures at a Glance,"

University of Alabama at Birmingham, Birmingham, AL, 2020.

[2] R. Blake, C. Lutz and C. (. Post, "Electroencephologram Controlled Wheel Chair," 2019.

[3] g.tec neurotechnology GmbH Austria, "User Manual for Unicorn Brain Interface Hybrid

Black," g.tec neurotechnology, Austria, 2019.

[4] A. Delorme and S. Makeig, "Welcome to the EEGLAB tutorial," [Online]. Available:

https://eeglab.org/tutorials/.

[5] D. Rotier, X. Zhang, Q. Guo and L. Yuan, "Research on Brain Control Technology for

Wheelchair," MATEC Web of Conferences, vol. 232, 2018.

[6] i. u. wavelet_spaghetti, "Illumino Brainlight: Turn Your Brainwaves Into Light," 2014.

[7] instructables user 439128238, "Mindwave Wheelchair," 2020.

[8] N. Shinde and K. George, "Brain-Controlled Driving Aid for Electric Wheelchairs,"

IEEE Xplore, pp. 115-118, 2016.

[9] S. K. Swee, K. D. T. Kiang and L. Z. You, "EEG Controlled Wheelchair," MATEC Web

of Conferences, no. 51, 2016.

[10] "Nordic Semiconductor," 06 12 2021. [Online]. Available:

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52.

html.

[11] M. Woolley, "Bluetooth 5 / Go Faster. Go Further.," Bluetooth SIG, 2019.

35

[12] P. McDermott-Wells, "What is Bluetooth?," IEEE Potentials, pp. 33-35, 2004.

[13] "Vol. 1: Architecture, Mixing, and Conventions," in Bluetooth Core Specification,

Bluetooth SIG, 2019.

[14] Medalist Power Wheelchair Owner's Manual.

[15] G. Peng, Y. Wang and R. Kasuganti, "Technological embeddedness and household

computer adoption," Information Technology & People, vol. 24, no. 4, pp. 414-436, 2011.

[16] A. Maksud, R. I. Chowdhury, T. T. Chowdhury, S. A. Fattah, C. Shahnanaz and S. S.

Chowdhury, "Low-cost EEG Based Electric Wheelchair with Advanced Control

Features," in IEE Region 10 Conference (TENCON), Malaysia, 2017.

[17] E. S. de Souza, E. E. Lamounier and A. A. Cardoso, "A Virtual Environment-based

Training System for the Blind," PeerJ PrePrints, 2017.

[18] Unicorn the Brain Interface, "Unicorn Suite," Unicorn, 2020. [Online]. Available:

https://www.unicorn-bi.com/unicorn-suite/. [Accessed 28 March 2021].

[19] Unicorn The Brain Interface, "Unicorn Hybrid Black for Students," Unicorn, 2020.

[Online]. Available: https://www.unicorn-bi.com/unicorn-hybrid-black-for-students/.

[Accessed 28 March 2021].

[20] Parallax Incorporated, "Store: 7.2V Motor, Bracket and Wheel Kit," [Online]. Available:

http://www.parallax.com/Store/Robots/AllRobots/tabid/755/ProductID/587/List/0/Default

.aspx?SortField=ProductName,ProductName. [Accessed 25 September 2011].

[21] Emotiv, "Headsets - EMOTIV EPOC X 14 Channel Mobile Brainwear®- Description,"

Emotiv, 2021. [Online]. Available: https://www.emotiv.com/product/emotiv-epoc-x-14-

channel-mobile-brainwear/#tab-description. [Accessed 28 March 2021].

36

[22] Emotiv, "Emotivpro," Emotiv, 2021. [Online]. Available:

https://www.emotiv.com/emotivpro/. [Accessed 28 March 2021].

[23] NeuroSky, "EEG Biosensors - Biosensors/EEG Headsets," NeuroSky, 2021. [Online].

Available: http://neurosky.com/biosensors/eeg-sensor/biosensors/. [Accessed 28 March

2021].

[24] NeuroSky, "EEG Biosensors - Biometric Algorithms," NeuroSky, 2021. [Online].

Available: http://neurosky.com/biosensors/eeg-sensor/algorithms/. [Accessed 28 March

2021].

37

APPENDIX

Appendix A: ABET Outcome 2, Design Factor Considerations

Appendix B: Preliminary Bill of Materials

Appendix C: Central Device Main Code

Appendix D: Peripheral Device Main Code

Appendix E: MatLab Code for Collecting and Processing Data

Appendix F: Main Code for UART Direction Control.

38

Appendix A: ABET Outcome 2, Design Factor Considerations

ABET Outcome 2 states "An ability to apply engineering design to produce solutions that meet
specified needs with consideration of public health safety, and welfare, as well as global,
cultural, social, environmental, and economic factors."

ABET also requires that design projects reference appropriate professional standards, such as
IEEE, ATSM, etc.

For each of the factors in Table A.1, indicate the page number(s) of your report where the item is
addressed, or provide a statement regarding why the factor is not applicable for this project.

Table A.1, Design Factors Considered

Design Factor Page number, or reason not applicable

Public health safety, and welfare 1, 30

Global 31

Cultural 30

Social 1, 30

Environmental 31

Economic 31

Professional Standards 23, 24, 25, Bluetooth Specifications

39

Appendix B: ABET Outcome 2, Design Factor Considerations

Product Cost Qty. Subtotal
Unicorn Hybrid Black EEG Headset* 1,194.07$ 1 1,194.07$
Nordic NRF52 DK 49.00$ 2 98.00$
MD20A 20Amp 6V-30V DC Motor Driver 17.25$ 2 34.50$
SparkFun Beefcake Relay Control Kit
(Ver. 2.0) 8.95$ 1 8.95$
ActiveCare Medical: Medalist
Power Wheelchair 1,899.00$ 1 1,899.00$
TOTAL COST 3,234.52$

Bill of Materials

40

Appendix C: Central Device Main Code
/**
 * Copyright (c) 2014 - 2021, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 * Semiconductor ASA integrated circuit in a product or a software update for
 * such product, must reproduce the above copyright notice, this list of
 * conditions and the following disclaimer in the documentation and/or other
 * materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 * contributors may be used to endorse or promote products derived from this
 * software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 * Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 * engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
/**
 * @brief BLE LED Button Service central and client application main file.
 *
 * This file contains the source code for a sample client application using the LED Button service.
 */

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "nrf.h" //pwm
#include "nrf_gpio.h"
#include "nrf_sdh.h"

41

#include "nrf_sdh_ble.h"
#include "nrf_sdh_soc.h"
#include "nrf_pwr_mgmt.h"
#include "app_timer.h"
#include "boards.h"
#include "bsp.h"
#include "bsp_btn_ble.h"
#include "ble.h"
#include "ble_hci.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "ble_db_discovery.h"
#include "ble_lbs_c.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_scan.h"

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"

#include <stdbool.h>
//#include <stdint.h>

#include "app_error.h"
//#include "bsp.h"
#include "nrf_delay.h"
#include "app_pwm.h"

#define CENTRAL_SCANNING_LED BSP_BOARD_LED_0 /**< Scanning LED will be on when the
device is scanning. */
#define CENTRAL_CONNECTED_LED BSP_BOARD_LED_1 /**< Connected LED will be on when the
device is connected. */
#define LEDBUTTON_LED BSP_BOARD_LED_2 /**< LED to indicate a change of state of the
the Button characteristic on the peer. */

#define SCAN_INTERVAL 0x00A0 /**< Determines scan interval in units of 0.625
millisecond. */
#define SCAN_WINDOW 0x0050 /**< Determines scan window in units of 0.625
millisecond. */
#define SCAN_DURATION 0x0000 /**< Timout when scanning. 0x0000 disables timeout.
*/

#define MIN_CONNECTION_INTERVAL MSEC_TO_UNITS(7.5, UNIT_1_25_MS) /**< Determines minimum
connection interval in milliseconds. */
#define MAX_CONNECTION_INTERVAL MSEC_TO_UNITS(30, UNIT_1_25_MS) /**< Determines maximum
connection interval in milliseconds. */
#define SLAVE_LATENCY 0 /**< Determines slave latency in terms of connection
events. */
#define SUPERVISION_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Determines supervision time-
out in units of 10 milliseconds. */

42

#define LEDBUTTON_BUTTON_PIN BSP_BUTTON_0 /**< Button that will write to the LED
characteristic of the peer */
#define BUTTON_DETECTION_DELAY APP_TIMER_TICKS(50) /**< Delay from a GPIOTE event until a
button is reported as pushed (in number of timer ticks). */

#define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE
configuration. */
#define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You
shouldn't need to modify this value. */

APP_PWM_INSTANCE(PWM1,1); // Create the instance "PWM1" using TIMER1.

static volatile bool ready_flag; // A flag indicating PWM status.

void pwm_ready_callback(uint32_t pwm_id) // PWM callback function
{
 ready_flag = true;
}

NRF_BLE_SCAN_DEF(m_scan); /**< Scanning module instance. */
BLE_LBS_C_DEF(m_ble_lbs_c); /**< Main structure used by the LBS client module. */
NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */
BLE_DB_DISCOVERY_DEF(m_db_disc); /**< DB discovery module instance. */
NRF_BLE_GQ_DEF(m_ble_gatt_queue, /**< BLE GATT Queue instance. */
 NRF_SDH_BLE_CENTRAL_LINK_COUNT,
 NRF_BLE_GQ_QUEUE_SIZE);

static char const m_target_periph_name[] = "Nordic_Blinky"; /**< Name of the device we try to connect to. This
name is searched in the scan report data*/

uint8_t data = 0;

/**@brief Function to handle asserts in the SoftDevice.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyze
 * how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
 app_error_handler(0xDEADBEEF, line_num, p_file_name);
}

/**@brief Function for handling the LED Button Service client errors.
 *

43

 * @param[in] nrf_error Error code containing information about what went wrong.
 */
static void lbs_error_handler(uint32_t nrf_error)
{
 APP_ERROR_HANDLER(nrf_error);
}

/**@brief Function for the LEDs initialization.
 *
 * @details Initializes all LEDs used by the application.
 */
static void leds_init(void)
{
 bsp_board_init(BSP_INIT_LEDS);
}

/**@brief Function to start scanning.
 */
static void scan_start(void)
{
 ret_code_t err_code;

 err_code = nrf_ble_scan_start(&m_scan);
 APP_ERROR_CHECK(err_code);

 bsp_board_led_off(CENTRAL_CONNECTED_LED);
 bsp_board_led_on(CENTRAL_SCANNING_LED);
}

/**@brief Handles events coming from the LED Button central module.
 */
static void lbs_c_evt_handler(ble_lbs_c_t * p_lbs_c, ble_lbs_c_evt_t * p_lbs_c_evt)
{
 switch (p_lbs_c_evt->evt_type)
 {
 case BLE_LBS_C_EVT_DISCOVERY_COMPLETE:
 {
 ret_code_t err_code;

 err_code = ble_lbs_c_handles_assign(&m_ble_lbs_c,
 p_lbs_c_evt->conn_handle,
 &p_lbs_c_evt->params.peer_db);
 NRF_LOG_INFO("LED Button service discovered on conn_handle 0x%x.", p_lbs_c_evt->conn_handle);

 err_code = app_button_enable();
 APP_ERROR_CHECK(err_code);

 // LED Button service discovered. Enable notification of Button.
 err_code = ble_lbs_c_button_notif_enable(p_lbs_c);
 APP_ERROR_CHECK(err_code);

44

 } break; // BLE_LBS_C_EVT_DISCOVERY_COMPLETE

 case BLE_LBS_C_EVT_BUTTON_NOTIFICATION:
 {
 //NRF_LOG_INFO("Button state changed on peer to 0x%x.", p_lbs_c_evt->params.button.button_state);

 //button state to control your GPIO output
 //gpio write

 //nrf_gpio_pin_write(25,0);
 //nrf_gpio_pin_write(24,0);

 if (p_lbs_c_evt->params.button.button_state==0x1)
 {
 //bsp_board_led_on(LEDBUTTON_LED);
 //NRF_LOG_INFO("Andrew says 0x1");
 //data = 0x1;
 NRF_LOG_INFO("Drive Forward");
 //motordriver pin dir
 nrf_gpio_pin_write(25,0);
 nrf_gpio_pin_write(24,0);
 app_pwm_channel_duty_set(&PWM1, 0, 40);
 app_pwm_channel_duty_set(&PWM1, 1, 40);
 //nrf_gpio_pin_write(25,0);
 //nrf_gpio_pin_write(23,1);

 }
 else if (p_lbs_c_evt->params.button.button_state==0x2)
 {
 //bsp_board_led_on(LEDBUTTON_LED);
 //NRF_LOG_INFO("Andrew says 0x2");
 //data = 0x2;
 NRF_LOG_INFO("Drive Backward");
 //motordriver pin dir
 nrf_gpio_pin_write(25,1);
 nrf_gpio_pin_write(24,1);
 app_pwm_channel_duty_set(&PWM1, 0, 40);
 app_pwm_channel_duty_set(&PWM1, 1, 40);
 //nrf_gpio_pin_write(25,0);
 //nrf_gpio_pin_write(24,0);
 }
 else if (p_lbs_c_evt->params.button.button_state==0x4)
 {
 //bsp_board_led_on(LEDBUTTON_LED);
 //NRF_LOG_INFO("Andrew says 0x4");
 //data = 0x4;
 NRF_LOG_INFO("Turn Left");
 //motordriver pin dir
 nrf_gpio_pin_write(25,0);
 nrf_gpio_pin_write(24,0);
 app_pwm_channel_duty_set(&PWM1, 0, 5);
 app_pwm_channel_duty_set(&PWM1, 1, 60);

45

 }
 else if (p_lbs_c_evt->params.button.button_state==0x8)
 {
 //bsp_board_led_on(LEDBUTTON_LED);
 //NRF_LOG_INFO("Andrew says 0x8");
 //data = 0x8;
 NRF_LOG_INFO("Turn Right");
 //motordriver pin dir
 nrf_gpio_pin_write(25,0);
 nrf_gpio_pin_write(24,0);
 app_pwm_channel_duty_set(&PWM1, 0, 60);
 app_pwm_channel_duty_set(&PWM1, 1, 5);

 }
 else if (p_lbs_c_evt->params.button.button_state==0x0)
 {
 //bsp_board_led_off(LEDBUTTON_LED);
 //NRF_LOG_INFO("Andrew says off");
 //data = 0x0;
 NRF_LOG_INFO("All Motors Stop");
 //motordriver pin dir
 nrf_gpio_pin_write(25,0);
 nrf_gpio_pin_write(24,0);
 app_pwm_channel_duty_set(&PWM1, 0, 0);
 app_pwm_channel_duty_set(&PWM1, 1, 0);

 }
 //if (data==0x0)
 //{
 //NRF_LOG_INFO("All Motors Stop");
 //}
 //if (data==0x1)
 //{
 //NRF_LOG_INFO("Drive Forward");
 //}
 //if (data==0x2)
 //{
 //NRF_LOG_INFO("Drive Backward");
 //}
 //if (data==0x4)
 //{
 //NRF_LOG_INFO("Turn Left");
 //}
 //if (data==0x8)
 //{
 //NRF_LOG_INFO("Turn Right");
 //}
 } break; // BLE_LBS_C_EVT_BUTTON_NOTIFICATION

 default:
 // No implementation needed.
 break;

46

 }
}

/**@brief Function for handling BLE events.
 *
 * @param[in] p_ble_evt Bluetooth stack event.
 * @param[in] p_context Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
 ret_code_t err_code;

 // For readability.
 ble_gap_evt_t const * p_gap_evt = &p_ble_evt->evt.gap_evt;

 switch (p_ble_evt->header.evt_id)
 {
 // Upon connection, check which peripheral has connected (HR or RSC), initiate DB
 // discovery, update LEDs status and resume scanning if necessary. */
 case BLE_GAP_EVT_CONNECTED:
 {
 NRF_LOG_INFO("Connected.");
 err_code = ble_lbs_c_handles_assign(&m_ble_lbs_c, p_gap_evt->conn_handle, NULL);
 APP_ERROR_CHECK(err_code);

 err_code = ble_db_discovery_start(&m_db_disc, p_gap_evt->conn_handle);
 APP_ERROR_CHECK(err_code);

 // Update LEDs status, and check if we should be looking for more
 // peripherals to connect to.
 bsp_board_led_on(CENTRAL_CONNECTED_LED);
 bsp_board_led_off(CENTRAL_SCANNING_LED);
 } break;

 // Upon disconnection, reset the connection handle of the peer which disconnected, update
 // the LEDs status and start scanning again.
 case BLE_GAP_EVT_DISCONNECTED:
 {
 app_pwm_channel_duty_set(&PWM1, 0, 0);
 app_pwm_channel_duty_set(&PWM1, 1, 0);
 NRF_LOG_INFO("Disconnected.");
 scan_start();
 } break;

 case BLE_GAP_EVT_TIMEOUT:
 {
 // We have not specified a timeout for scanning, so only connection attemps can timeout.
 if (p_gap_evt->params.timeout.src == BLE_GAP_TIMEOUT_SRC_CONN)
 {
 NRF_LOG_DEBUG("Connection request timed out.");
 }
 } break;

47

 case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST:
 {
 // Accept parameters requested by peer.
 err_code = sd_ble_gap_conn_param_update(p_gap_evt->conn_handle,
 &p_gap_evt->params.conn_param_update_request.conn_params);
 APP_ERROR_CHECK(err_code);
 } break;

 case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
 {
 NRF_LOG_DEBUG("PHY update request.");
 ble_gap_phys_t const phys =
 {
 .rx_phys = BLE_GAP_PHY_AUTO,
 .tx_phys = BLE_GAP_PHY_AUTO,
 };
 err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
 APP_ERROR_CHECK(err_code);
 } break;

 case BLE_GATTC_EVT_TIMEOUT:
 {
 // Disconnect on GATT Client timeout event.
 NRF_LOG_DEBUG("GATT Client Timeout.");
 err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
 APP_ERROR_CHECK(err_code);
 } break;

 case BLE_GATTS_EVT_TIMEOUT:
 {
 // Disconnect on GATT Server timeout event.
 NRF_LOG_DEBUG("GATT Server Timeout.");
 err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
 APP_ERROR_CHECK(err_code);
 } break;

 default:
 // No implementation needed.
 break;
 }
}

/**@brief LED Button client initialization.
 */
static void lbs_c_init(void)
{
 ret_code_t err_code;
 ble_lbs_c_init_t lbs_c_init_obj;

48

 lbs_c_init_obj.evt_handler = lbs_c_evt_handler;
 lbs_c_init_obj.p_gatt_queue = &m_ble_gatt_queue;
 lbs_c_init_obj.error_handler = lbs_error_handler;

 err_code = ble_lbs_c_init(&m_ble_lbs_c, &lbs_c_init_obj);
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for initializing the BLE stack.
 *
 * @details Initializes the SoftDevice and the BLE event interrupts.
 */
static void ble_stack_init(void)
{
 ret_code_t err_code;

 err_code = nrf_sdh_enable_request();
 APP_ERROR_CHECK(err_code);

 // Configure the BLE stack using the default settings.
 // Fetch the start address of the application RAM.
 uint32_t ram_start = 0;
 err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
 APP_ERROR_CHECK(err_code);

 // Enable BLE stack.
 err_code = nrf_sdh_ble_enable(&ram_start);
 APP_ERROR_CHECK(err_code);

 // Register a handler for BLE events.
 NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}

/**@brief Function for handling events from the button handler module.
 *
 * @param[in] pin_no The pin that the event applies to.
 * @param[in] button_action The button action (press/release).
 */
static void button_event_handler(uint8_t pin_no, uint8_t button_action)
{
 ret_code_t err_code;

 switch (pin_no)
 {
 case LEDBUTTON_BUTTON_PIN:
 err_code = ble_lbs_led_status_send(&m_ble_lbs_c, button_action);
 if (err_code != NRF_SUCCESS &&
 err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
 err_code != NRF_ERROR_INVALID_STATE)
 {
 APP_ERROR_CHECK(err_code);

49

 }
 if (err_code == NRF_SUCCESS)
 {
 NRF_LOG_INFO("LBS write LED state %d", button_action);
 }
 break;

 default:
 APP_ERROR_HANDLER(pin_no);
 break;
 }
}

/**@brief Function for handling Scaning events.
 *
 * @param[in] p_scan_evt Scanning event.
 */
static void scan_evt_handler(scan_evt_t const * p_scan_evt)
{
 ret_code_t err_code;

 switch(p_scan_evt->scan_evt_id)
 {
 case NRF_BLE_SCAN_EVT_CONNECTING_ERROR:
 err_code = p_scan_evt->params.connecting_err.err_code;
 APP_ERROR_CHECK(err_code);
 break;
 default:
 break;
 }
}

/**@brief Function for initializing the button handler module.
 */
static void buttons_init(void)
{
 ret_code_t err_code;

 //The array must be static because a pointer to it will be saved in the button handler module.
 static app_button_cfg_t buttons[] =
 {
 {LEDBUTTON_BUTTON_PIN, false, BUTTON_PULL, button_event_handler}
 };

 err_code = app_button_init(buttons, ARRAY_SIZE(buttons),
 BUTTON_DETECTION_DELAY);
 APP_ERROR_CHECK(err_code);
}

50

/**@brief Function for handling database discovery events.
 *
 * @details This function is callback function to handle events from the database discovery module.
 * Depending on the UUIDs that are discovered, this function should forward the events
 * to their respective services.
 *
 * @param[in] p_event Pointer to the database discovery event.
 */
static void db_disc_handler(ble_db_discovery_evt_t * p_evt)
{
 ble_lbs_on_db_disc_evt(&m_ble_lbs_c, p_evt);
}

/**@brief Database discovery initialization.
 */
static void db_discovery_init(void)
{
 ble_db_discovery_init_t db_init;

 memset(&db_init, 0, sizeof(db_init));

 db_init.evt_handler = db_disc_handler;
 db_init.p_gatt_queue = &m_ble_gatt_queue;

 ret_code_t err_code = ble_db_discovery_init(&db_init);
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for initializing the log.
 */
static void log_init(void)
{
 ret_code_t err_code = NRF_LOG_INIT(NULL);
 APP_ERROR_CHECK(err_code);

 NRF_LOG_DEFAULT_BACKENDS_INIT();
}

/**@brief Function for initializing the timer.
 */
static void timer_init(void)
{
 ret_code_t err_code = app_timer_init();
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for initializing the Power manager. */
static void power_management_init(void)
{

51

 ret_code_t err_code;
 err_code = nrf_pwr_mgmt_init();
 APP_ERROR_CHECK(err_code);
}

static void scan_init(void)
{
 ret_code_t err_code;
 nrf_ble_scan_init_t init_scan;

 memset(&init_scan, 0, sizeof(init_scan));

 init_scan.connect_if_match = true;
 init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG;

 err_code = nrf_ble_scan_init(&m_scan, &init_scan, scan_evt_handler);
 APP_ERROR_CHECK(err_code);

 // Setting filters for scanning.
 err_code = nrf_ble_scan_filters_enable(&m_scan, NRF_BLE_SCAN_NAME_FILTER, false);
 APP_ERROR_CHECK(err_code);

 err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_NAME_FILTER, m_target_periph_name);
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for initializing the GATT module.
 */
static void gatt_init(void)
{
 ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL);
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for handling the idle state (main loop).
 *
 * @details Handle any pending log operation(s), then sleep until the next event occurs.
 */
static void idle_state_handle(void)
{
 NRF_LOG_FLUSH();
 nrf_pwr_mgmt_run();
}

static void gpio_init()
{
 nrf_gpio_cfg(25,1,1,0,0,0);
 nrf_gpio_cfg(24,1,1,0,0,0);
 nrf_gpio_cfg(21,1,1,0,0,0);
 //nrf_gpio_pin_write(25,1);
 nrf_gpio_pin_write(21,0);

52

}

static void pwm_init()
{
 ret_code_t err_code;

 /* 2-channel PWM, 200Hz, output on DK LED pins. */
 app_pwm_config_t pwm1_cfg = APP_PWM_DEFAULT_CONFIG_2CH(800L, 26, 27);

 /* Switch the polarity of the second channel. */
 pwm1_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_HIGH;
 pwm1_cfg.pin_polarity[1] = APP_PWM_POLARITY_ACTIVE_HIGH;

 /* Initialize and enable PWM. */
 err_code = app_pwm_init(&PWM1,&pwm1_cfg,pwm_ready_callback);
 APP_ERROR_CHECK(err_code);
 app_pwm_enable(&PWM1);
}

int main(void)
{
 // Initialize.
 log_init();
 gpio_init();
 timer_init();
 leds_init();
 buttons_init();
 power_management_init();
 ble_stack_init();
 scan_init();
 gatt_init();
 db_discovery_init();
 lbs_c_init();
 pwm_init();

 // Start execution.
 NRF_LOG_INFO("Blinky CENTRAL example started.");
 scan_start();

 // Turn on the LED to signal scanning.
 bsp_board_led_on(CENTRAL_SCANNING_LED);

 // Enter main loop.
 for (;;)
 {
 idle_state_handle();
 //while (app_pwm_channel_duty_set(&PWM1, 0, 50) == NRF_ERROR_BUSY);
 // while (app_pwm_channel_duty_set(&PWM1, 1, 10) == NRF_ERROR_BUSY);

 }
}

53

Appendix D: Peripheral Device Main Code
/**
 * Copyright (c) 2015 - 2021, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 * Semiconductor ASA integrated circuit in a product or a software update for
 * such product, must reproduce the above copyright notice, this list of
 * conditions and the following disclaimer in the documentation and/or other
 * materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 * contributors may be used to endorse or promote products derived from this
 * software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 * Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 * engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
/**
 * @brief Blinky Sample Application main file.
 *
 * This file contains the source code for a sample server application using the LED Button service.
 */

#include <stdint.h>
#include <string.h>
#include "nordic_common.h"
#include "nrf.h"
#include "app_error.h"
#include "ble.h"

54

#include "ble_err.h"
#include "ble_hci.h"
#include "ble_srv_common.h"
#include "ble_advdata.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_ble.h"
#include "boards.h"
#include "app_timer.h"
#include "app_button.h"
#include "ble_lbs.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "nrf_pwr_mgmt.h"

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"

#define ADVERTISING_LED BSP_BOARD_LED_0 /**< Is on when device is advertising. */
#define CONNECTED_LED BSP_BOARD_LED_1 /**< Is on when device has connected. */
#define LEDBUTTON_LED BSP_BOARD_LED_2 /**< LED to be toggled with the help of the
LED Button Service. */
#define LEDBUTTON_BUTTON BSP_BUTTON_0 /**< Button that will trigger the notification
event with the LED Button Service */

#define DEVICE_NAME "Nordic_Blinky" /**< Name of device. Will be included in the
advertising data. */

#define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You
shouldn't need to modify this value. */
#define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE
configuration. */

#define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms;
this value corresponds to 40 ms). */
#define APP_ADV_DURATION BLE_GAP_ADV_TIMEOUT_GENERAL_UNLIMITED /**< The advertising
time-out (in units of seconds). When set to 0, we will never time out. */

#define MIN_CONN_INTERVAL MSEC_TO_UNITS(100, UNIT_1_25_MS) /**< Minimum acceptable
connection interval (0.5 seconds). */
#define MAX_CONN_INTERVAL MSEC_TO_UNITS(200, UNIT_1_25_MS) /**< Maximum acceptable
connection interval (1 second). */
#define SLAVE_LATENCY 0 /**< Slave latency. */
#define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory
time-out (4 seconds). */

#define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(20000) /**< Time from initiating
event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (15 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time between each call
to sd_ble_gap_conn_param_update after the first call (5 seconds). */

55

#define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving
up the connection parameter negotiation. */

#define BUTTON_DETECTION_DELAY APP_TIMER_TICKS(50) /**< Delay from a GPIOTE event until
a button is reported as pushed (in number of timer ticks). */

#define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be
used to identify stack location on stack unwind. */

BLE_LBS_DEF(m_lbs); /**< LED Button Service instance. */
NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/
uint8_t data=0;
static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current
connection. */

static uint8_t m_adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET; /**< Advertising handle used to
identify an advertising set. */
static uint8_t m_enc_advdata[BLE_GAP_ADV_SET_DATA_SIZE_MAX]; /**< Buffer for storing an
encoded advertising set. */
static uint8_t m_enc_scan_response_data[BLE_GAP_ADV_SET_DATA_SIZE_MAX]; /**< Buffer for storing an
encoded scan data. */

/**@brief Struct that contains pointers to the encoded advertising data. */
static ble_gap_adv_data_t m_adv_data =
{
 .adv_data =
 {
 .p_data = m_enc_advdata,
 .len = BLE_GAP_ADV_SET_DATA_SIZE_MAX
 },
 .scan_rsp_data =
 {
 .p_data = m_enc_scan_response_data,
 .len = BLE_GAP_ADV_SET_DATA_SIZE_MAX

 }
};

/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyze
 * how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{

56

 app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**@brief Function for the LEDs initialization.
 *
 * @details Initializes all LEDs used by the application.
 */
static void leds_init(void)
{
 bsp_board_init(BSP_INIT_LEDS);
}

/**@brief Function for the Timer initialization.
 *
 * @details Initializes the timer module.
 */
static void timers_init(void)
{
 // Initialize timer module, making it use the scheduler
 ret_code_t err_code = app_timer_init();
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for the GAP initialization.
 *
 * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the
 * device including the device name, appearance, and the preferred connection parameters.
 */
static void gap_params_init(void)
{
 ret_code_t err_code;
 ble_gap_conn_params_t gap_conn_params;
 ble_gap_conn_sec_mode_t sec_mode;

 BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

 err_code = sd_ble_gap_device_name_set(&sec_mode,
 (const uint8_t *)DEVICE_NAME,
 strlen(DEVICE_NAME));
 APP_ERROR_CHECK(err_code);

 memset(&gap_conn_params, 0, sizeof(gap_conn_params));

 gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
 gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
 gap_conn_params.slave_latency = SLAVE_LATENCY;
 gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;

 err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
 APP_ERROR_CHECK(err_code);

57

}

/**@brief Function for initializing the GATT module.
 */
static void gatt_init(void)
{
 ble_gatts_char_handles_t gatts_char_handle = {0,
 BLE_GATT_HANDLE_INVALID,
 BLE_GATT_HANDLE_INVALID,
 BLE_GATT_HANDLE_INVALID};

 ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL);
 //err_code = characteristic_add(BLE_GATT_HANDLE_INVALID, 0, &gatts_char_handle);
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for initializing the Advertising functionality.
 *
 * @details Encodes the required advertising data and passes it to the stack.
 * Also builds a structure to be passed to the stack when starting advertising.
 */
static void advertising_init(void)
{
 ret_code_t err_code;
 ble_advdata_t advdata;
 ble_advdata_t srdata;

 ble_uuid_t adv_uuids[] = {{LBS_UUID_SERVICE, m_lbs.uuid_type}};

 // Build and set advertising data.
 memset(&advdata, 0, sizeof(advdata));

 advdata.name_type = BLE_ADVDATA_FULL_NAME;
 advdata.include_appearance = true;
 advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;

 memset(&srdata, 0, sizeof(srdata));
 srdata.uuids_complete.uuid_cnt = sizeof(adv_uuids) / sizeof(adv_uuids[0]);
 srdata.uuids_complete.p_uuids = adv_uuids;

 err_code = ble_advdata_encode(&advdata, m_adv_data.adv_data.p_data, &m_adv_data.adv_data.len);
 APP_ERROR_CHECK(err_code);

 err_code = ble_advdata_encode(&srdata, m_adv_data.scan_rsp_data.p_data,
&m_adv_data.scan_rsp_data.len);
 APP_ERROR_CHECK(err_code);

 ble_gap_adv_params_t adv_params;

 // Set advertising parameters.

58

 memset(&adv_params, 0, sizeof(adv_params));

 adv_params.primary_phy = BLE_GAP_PHY_1MBPS;
 adv_params.duration = APP_ADV_DURATION;
 adv_params.properties.type = BLE_GAP_ADV_TYPE_CONNECTABLE_SCANNABLE_UNDIRECTED;
 adv_params.p_peer_addr = NULL;
 adv_params.filter_policy = BLE_GAP_ADV_FP_ANY;
 adv_params.interval = APP_ADV_INTERVAL;

 err_code = sd_ble_gap_adv_set_configure(&m_adv_handle, &m_adv_data, &adv_params);
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 * application about an error.
 *
 * @param[in] nrf_error Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
 APP_ERROR_HANDLER(nrf_error);
}

/**@brief Function for handling write events to the LED characteristic.
 *
 * @param[in] p_lbs Instance of LED Button Service to which the write applies.
 * @param[in] led_state Written/desired state of the LED.
 */
static void led_write_handler(uint16_t conn_handle, ble_lbs_t * p_lbs, uint8_t led_state)
{
 if (led_state)
 {
 bsp_board_led_on(LEDBUTTON_LED);
 NRF_LOG_INFO("Received LED ON!");
 }
 else
 {
 bsp_board_led_off(LEDBUTTON_LED);
 NRF_LOG_INFO("Received LED OFF!");
 }
}

/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
 ret_code_t err_code;
 ble_lbs_init_t init = {0};

59

 nrf_ble_qwr_init_t qwr_init = {0};

 // Initialize Queued Write Module.
 qwr_init.error_handler = nrf_qwr_error_handler;

 err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
 APP_ERROR_CHECK(err_code);

 // Initialize LBS.
 init.led_write_handler = led_write_handler;

 err_code = ble_lbs_init(&m_lbs, &init);
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for handling the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module that
 * are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply
 * setting the disconnect_on_fail config parameter, but instead we use the event
 * handler mechanism to demonstrate its use.
 *
 * @param[in] p_evt Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
 ret_code_t err_code;

 if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
 {
 err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
 APP_ERROR_CHECK(err_code);
 }
}

/**@brief Function for handling a Connection Parameters error.
 *
 * @param[in] nrf_error Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
 APP_ERROR_HANDLER(nrf_error);
}

/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{

60

 ret_code_t err_code;
 ble_conn_params_init_t cp_init;

 memset(&cp_init, 0, sizeof(cp_init));

 cp_init.p_conn_params = NULL;
 cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
 cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY;
 cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT;
 cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;
 cp_init.disconnect_on_fail = false;
 cp_init.evt_handler = on_conn_params_evt;
 cp_init.error_handler = conn_params_error_handler;

 err_code = ble_conn_params_init(&cp_init);
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for starting advertising.
 */
static void advertising_start(void)
{
 ret_code_t err_code;

 err_code = sd_ble_gap_adv_start(m_adv_handle, APP_BLE_CONN_CFG_TAG);
 APP_ERROR_CHECK(err_code);

 bsp_board_led_on(ADVERTISING_LED);
}

/**@brief Function for handling BLE events.
 *
 * @param[in] p_ble_evt Bluetooth stack event.
 * @param[in] p_context Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
 ret_code_t err_code;

 switch (p_ble_evt->header.evt_id)
 {
 case BLE_GAP_EVT_CONNECTED:
 NRF_LOG_INFO("Connected");
 bsp_board_led_on(CONNECTED_LED);
 bsp_board_led_off(ADVERTISING_LED);
 m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
 err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
 APP_ERROR_CHECK(err_code);
 err_code = app_button_enable();
 APP_ERROR_CHECK(err_code);
 break;

61

 case BLE_GAP_EVT_DISCONNECTED:
 NRF_LOG_INFO("Disconnected");
 bsp_board_led_off(CONNECTED_LED);
 m_conn_handle = BLE_CONN_HANDLE_INVALID;
 err_code = app_button_disable();
 APP_ERROR_CHECK(err_code);
 advertising_start();
 break;

 case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
 // Pairing not supported
 err_code = sd_ble_gap_sec_params_reply(m_conn_handle,
 BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP,
 NULL,
 NULL);
 APP_ERROR_CHECK(err_code);
 break;

 case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
 {
 NRF_LOG_DEBUG("PHY update request.");
 ble_gap_phys_t const phys =
 {
 .rx_phys = BLE_GAP_PHY_AUTO,
 .tx_phys = BLE_GAP_PHY_AUTO,
 };
 err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
 APP_ERROR_CHECK(err_code);
 } break;

 case BLE_GATTS_EVT_SYS_ATTR_MISSING:
 // No system attributes have been stored.
 err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
 APP_ERROR_CHECK(err_code);
 break;

 case BLE_GATTC_EVT_TIMEOUT:
 // Disconnect on GATT Client timeout event.
 NRF_LOG_DEBUG("GATT Client Timeout.");
 err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
 APP_ERROR_CHECK(err_code);
 break;

 case BLE_GATTS_EVT_TIMEOUT:
 // Disconnect on GATT Server timeout event.
 NRF_LOG_DEBUG("GATT Server Timeout.");
 err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
 APP_ERROR_CHECK(err_code);
 break;

62

 default:
 // No implementation needed.
 break;
 }
}

/**@brief Function for initializing the BLE stack.
 *
 * @details Initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
 ret_code_t err_code;

 err_code = nrf_sdh_enable_request();
 APP_ERROR_CHECK(err_code);

 // Configure the BLE stack using the default settings.
 // Fetch the start address of the application RAM.
 uint32_t ram_start = 0;
 err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
 APP_ERROR_CHECK(err_code);

 // Enable BLE stack.
 err_code = nrf_sdh_ble_enable(&ram_start);
 APP_ERROR_CHECK(err_code);

 // Register a handler for BLE events.
 NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}

/**@brief Function for handling events from the button handler module.
 *
 * @param[in] pin_no The pin that the event applies to.
 * @param[in] button_action The button action (press/release).
 */
static void button_event_handler(uint8_t pin_no, uint8_t button_action)
{
 ret_code_t err_code;

 switch (pin_no)
 {
 case 11:
 NRF_LOG_INFO("Send button state change.");
 //check zero bit of data
 //data = (button_action & 0x1);
 //NRF_LOG_INFO("data = 0x%x",data);
 if (button_action == 1)
 {
 err_code = ble_lbs_on_button_change(m_conn_handle, &m_lbs, 0x1);
 if (err_code != NRF_SUCCESS &&

63

 err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
 err_code != NRF_ERROR_INVALID_STATE &&
 err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
 {
 APP_ERROR_CHECK(err_code);
 }
 }
 else
 {
 err_code = ble_lbs_on_button_change(m_conn_handle, &m_lbs, 0x0);
 if (err_code != NRF_SUCCESS &&
 err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
 err_code != NRF_ERROR_INVALID_STATE &&
 err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
 {
 APP_ERROR_CHECK(err_code);
 }
 }

 break;
 case 12:
 NRF_LOG_INFO("Send button state change.");
 //check zero bit of data
 //data = (button_action & 0x1);
 //NRF_LOG_INFO("data = 0x%x",data);
 if (button_action == 0x1)
 {
 err_code = ble_lbs_on_button_change(m_conn_handle, &m_lbs, 0x2);
 if (err_code != NRF_SUCCESS &&
 err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
 err_code != NRF_ERROR_INVALID_STATE &&
 err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
 {
 APP_ERROR_CHECK(err_code);
 }
 }
 else
 {
 err_code = ble_lbs_on_button_change(m_conn_handle, &m_lbs, 0x0);
 if (err_code != NRF_SUCCESS &&
 err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
 err_code != NRF_ERROR_INVALID_STATE &&
 err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
 {
 APP_ERROR_CHECK(err_code);
 }
 }

 break;
 case 24:
 NRF_LOG_INFO("Send button state change.");
 //check zero bit of data
 //data = (button_action & 0x1);

64

 //NRF_LOG_INFO("data = 0x%x",data);
 if (button_action == 0x1)
 {
 err_code = ble_lbs_on_button_change(m_conn_handle, &m_lbs, 0x4);
 if (err_code != NRF_SUCCESS &&
 err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
 err_code != NRF_ERROR_INVALID_STATE &&
 err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
 {
 APP_ERROR_CHECK(err_code);
 }
 }
 else
 {
 err_code = ble_lbs_on_button_change(m_conn_handle, &m_lbs, 0x0);
 if (err_code != NRF_SUCCESS &&
 err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
 err_code != NRF_ERROR_INVALID_STATE &&
 err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
 {
 APP_ERROR_CHECK(err_code);
 }
 }

 break;
 case 25:
 NRF_LOG_INFO("Send button state change.");
 //check zero bit of data
 //data = (button_action & 0x1);
 //NRF_LOG_INFO("data = 0x%x",data);
 if (button_action == 0x1)
 {
 err_code = ble_lbs_on_button_change(m_conn_handle, &m_lbs, 0x8);
 if (err_code != NRF_SUCCESS &&
 err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
 err_code != NRF_ERROR_INVALID_STATE &&
 err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
 {
 APP_ERROR_CHECK(err_code);
 }
 }
 else
 {
 err_code = ble_lbs_on_button_change(m_conn_handle, &m_lbs, 0x0);
 if (err_code != NRF_SUCCESS &&
 err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
 err_code != NRF_ERROR_INVALID_STATE &&
 err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
 {
 APP_ERROR_CHECK(err_code);
 }
 }

65

 break;
 default:
 APP_ERROR_HANDLER(pin_no);
 break;
 }
}

/**@brief Function for initializing the button handler module.
 */
static void buttons_init(void)
{
 ret_code_t err_code;

 //The array must be static because a pointer to it will be saved in the button handler module.
 static app_button_cfg_t buttons[] =
 {
 {11, false, BUTTON_PULL, button_event_handler},
 {12, false, BUTTON_PULL, button_event_handler},
 {24, false, BUTTON_PULL, button_event_handler},
 {25, false, BUTTON_PULL, button_event_handler}

 };

 err_code = app_button_init(buttons, ARRAY_SIZE(buttons),
 BUTTON_DETECTION_DELAY);
 APP_ERROR_CHECK(err_code);
}

static void log_init(void)
{
 ret_code_t err_code = NRF_LOG_INIT(NULL);
 APP_ERROR_CHECK(err_code);

 NRF_LOG_DEFAULT_BACKENDS_INIT();
}

/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
 ret_code_t err_code;
 err_code = nrf_pwr_mgmt_init();
 APP_ERROR_CHECK(err_code);
}

/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */

66

static void idle_state_handle(void)
{
 if (NRF_LOG_PROCESS() == false)
 {
 nrf_pwr_mgmt_run();
 }
}

/**@brief Function for application main entry.
 */
int main(void)
{
 // Initialize.
 log_init();
 leds_init();
 timers_init();
 buttons_init();
 power_management_init();
 ble_stack_init();
 gap_params_init();
 gatt_init();
 services_init();
 advertising_init();
 conn_params_init();

 // Start execution.
 NRF_LOG_INFO("Blinky example started.");
 advertising_start();

 // Enter main loop.
 for (;;)
 {
 idle_state_handle();
 }
}

67

Appendix E: MatLab Code for Collecting and Processing Data
%%MatLab Code to Get Data from Headset%%

set_param('matthewsWinner_presentation','SimulationCommand','start') %start simulation
pause(2) %wait two seconds
count=0;
while(1)
set_param('matthewsWinner_presentation','SimulationCommand','pause') %pause simulation
[N,M]=size(simout.data); %how much data collected from the simulation
for(i=1:250:N-250)
 averagedata1=sum(simout.data(i:i+249));
 averagedata=averagedata1/250; %find average over 250 data points
 if averagedata > 1000 %if average is above threshold
 writeDigitalPin(a,'D12',0) %turn on
 else
 writeDigitalPin(a,'D12',1) %turn off
 end

end
count=count+1;
set_param('matthewsWinner_presentation','SimulationCommand','continue'); %continue simulation
pause(2); % wait two seconds
end

68

Appendix F: Main Code for UART Direction Control.

#include <__cross_studio_io.h>
#include "nrf.h"
#include "nrf51.h"
#include "../NRF_ATM/GPIO_ATM/GPIO_ATM.h"
#include "../NRF_ATM/ADC_ATM/ADC_ATM.h"
#include "../NRF_ATM/UART_ATM/UART_ATM.h"
#include "../NRF_ATM/s140_nrf52_7.2.0_API/include/ble_gap.h"

void UART0_IRQHandler(void);

uint32_t data;

void main(void)
{
 //NRF_TIMER0->MODE&=~(0x1<<0);
 //NRF_TIMER0->MODE|=(0x0<<0); //timer mode
 //NRF_TIMER0->BITMODE&=~(0x2<<0);
 //NRF_TIMER0->BITMODE|=(0x1<<0); //set to 8 bit mode
 //NRF_TIMER0->PRESCALER&=~(0xF<<0);
 //NRF_TIMER0->PRESCALER|=(0<<0); //16 MHz clock
 //NRF_TIMER0->CC[2]=160000; //.1s
 //NRF_TIMER0->SHORTS&=~(0xF<<0)|(0xF<<8);
 //NRF_TIMER0->SHORTS|=(0x1<<2); //Clear task on cc[2] event

 uint32_t BM, PS, CCV;

 TIMER_ATM(.5, &BM, &PS, &CCV, 0);

 TIMER_CNF_ATM(0,BM,PS,CCV);

 UART_CNF_ATM(0,11,11,9600,0,0); //RXD
 UART_CNF_ATM(1,9,9,9600,0,0); //TXD

//Background PWM Signal - 1kHz
//Left Motor Driver
 NRF_TIMER1->MODE&=~(0x1<<0);
 NRF_TIMER1->MODE|=(0x0<<0); //timer mode
 NRF_TIMER1->BITMODE&=~(0x3<<0);
 NRF_TIMER1->BITMODE|=(0x0<<0); //set to 16 bit mode
 NRF_TIMER1->PRESCALER&=~(0xF<<0);
 NRF_TIMER1->PRESCALER|=(1<<0); //8 MHz clock
 NRF_TIMER1->CC[0]=6000; //.00125s
 NRF_TIMER1->CC[1]=8000; // .0025s
 //NRF_TIMER1->CC[2]=7960;
 NRF_TIMER1->SHORTS&=~(0xF<<0)|(0xF<<8);
 NRF_TIMER1->SHORTS|=(0x1<<1); //Clear task on cc[1] event

//Background PWM Signal - 1kHz
//Right Motor Driver

69

 NRF_TIMER2->MODE&=~(0x1<<0);
 NRF_TIMER2->MODE|=(0x0<<0); //timer mode
 NRF_TIMER2->BITMODE&=~(0x3<<0);
 NRF_TIMER2->BITMODE|=(0x0<<0); //set to 16 bit mode
 NRF_TIMER2->PRESCALER&=~(0xF<<0);
 NRF_TIMER2->PRESCALER|=(1<<0); //8 MHz clock
 NRF_TIMER2->CC[0]=6000; //.00125s
 NRF_TIMER2->CC[1]=8000; // .0025s
 //NRF_TIMER1->CC[2]=7960;
 NRF_TIMER2->SHORTS&=~(0xF<<0)|(0xF<<8);
 NRF_TIMER2->SHORTS|=(0x1<<1); //Clear task on cc[1] event

//Configure GPIO outputs for DIR of motor drivers
 GPIO_CNF_ATM(13,1,1,0,0,0); //right motor driver
 GPIO_CNF_ATM(15,1,1,0,0,0); //left motor driver

 //GPIO_WRITE_ATM(15,0); //left motor DIR //0 Forward
 //GPIO_WRITE_ATM(13,1); //right motor DIR //1 Reverse

//Configure GPIO outputs for PWN for motor driver
 GPIO_CNF_ATM(16,1,1,0,0,0); //left motor driver PWM
 GPIO_CNF_ATM(14,1,1,0,0,0); //right motor driver PWM

//Configure GPIO output for Emergency Brake relay
 GPIO_CNF_ATM(12,1,1,0,0,0);

 GPIO_WRITE_ATM(12,0);

//GPIOTE peripheral for output left motor driver
 NRF_GPIOTE->CONFIG[0]&=~((0x3<<0)|(0x1F<<8)|(0x3<<16)|(0x1<<20));
 NRF_GPIOTE->CONFIG[0]|=((0x3<<0)|(16<<8)|(0x3<<16)|(0x0<<20));
//GPIOTE peripheral for output right motor driver
 NRF_GPIOTE->CONFIG[1]&=~((0x3<<0)|(0x1F<<8)|(0x3<<16)|(0x1<<20));
 NRF_GPIOTE->CONFIG[1]|=((0x3<<0)|(14<<8)|(0x3<<16)|(0x0<<20));

//PPI peripheral for interconnecting TIMER Event to GPIO Task
 //Enable our channels for left motor driver
 NRF_PPI->CHENSET=0x1<<0;
 NRF_PPI->CH[0].EEP=&NRF_TIMER1->EVENTS_COMPARE[0];
 NRF_PPI->CH[0].TEP=&NRF_GPIOTE->TASKS_OUT[0];

 NRF_PPI->CHENSET=0x1<<1;
 NRF_PPI->CH[1].EEP=&NRF_TIMER1->EVENTS_COMPARE[1];
 NRF_PPI->CH[1].TEP=&NRF_GPIOTE->TASKS_OUT[0];

 //Enable our channels for right motor driver
 NRF_PPI->CHENSET=0x1<<2;
 NRF_PPI->CH[2].EEP=&NRF_TIMER2->EVENTS_COMPARE[0];
 NRF_PPI->CH[2].TEP=&NRF_GPIOTE->TASKS_OUT[1];

 NRF_PPI->CHENSET=0x1<<3;
 NRF_PPI->CH[3].EEP=&NRF_TIMER2->EVENTS_COMPARE[1];
 NRF_PPI->CH[3].TEP=&NRF_GPIOTE->TASKS_OUT[1];

70

 //NRF_TIMER1->TASKS_START=1; //Start timer 1
 //NRF_TIMER2->TASKS_START=1; //Start timer 2
 NRF_UART0->TASKS_STARTRX=1; //Start the UART
 NRF_UART0->TASKS_STARTTX=1;
 //NRF_UART0->INTENSET=1;

 NRF_UART0->INTENSET&=~(0xFF<<0);
 NRF_UART0->INTENSET|=(0x1<<2);

 NVIC_EnableIRQ(UART0_IRQn);

 //NRF_UART0->EVENTS_RXDRDY=0;
 //uint32_t data=0;
 //data=NRF_UART0->RXD;

 //61 - a
 //73 - s
 //64 - d
 //77 - w

 sd

 while(1)
 {
 //NRF_TIMER1->TASKS_STOP=1;
 //NRF_TIMER2->TASKS_STOP=1;
 __WFI();
 }

}

void UART0_IRQHandler(void)
{
NVIC_DisableIRQ(UART0_IRQn);
NRF_UART0->EVENTS_RXDRDY=0;
data=NRF_UART0->RXD&0xFF;
NRF_TIMER0->TASKS_STOP=1;
NRF_TIMER0->TASKS_CLEAR=1;

if (data==0x41) //Last byte of info for UP - 41
{
 //Start timer 0
 NRF_TIMER1->TASKS_START=1; //Start timer 1
 NRF_TIMER2->TASKS_START=1; //Start timer 2
 GPIO_WRITE_ATM(15,0); //left motor DIR //0 Forward
 GPIO_WRITE_ATM(13,0); //right motor DIR
 GPIO_WRITE_ATM(16,1);
 GPIO_WRITE_ATM(16,0);
 //NRF_TIMER0->TASKS_START=1;
//debug_printf("UP \n",data);

71

}
if (data==0x42) //Last byte of info for DOWN
{
 NRF_TIMER1->TASKS_START=1; //Start timer 1 Left Motor
 NRF_TIMER2->TASKS_START=1; //Start timer 2 Right Motor
 GPIO_WRITE_ATM(15,1); //left motor DIR Reverse
 GPIO_WRITE_ATM(13,1); //right motor DIR Reverse
 //NRF_TIMER1->TASKS_STOP=1;
 //NRF_TIMER2->TASKS_STOP=1;
//debug_printf("DOWN \n",data);
}
if (data==0x44) //Last byte of info for LEFT
{
 NRF_TIMER2->TASKS_START=1; //Start timer 2 Right Motor
 GPIO_WRITE_ATM(13,0); //right motor DIR forward
 //NRF_TIMER2->TASKS_STOP=1;
//debug_printf("Left \n",data);
}
if (data==0x43) //Last byte of info for RIGHT
{
 NRF_TIMER1->TASKS_START=1; //Start timer 1 Left Motor
 GPIO_WRITE_ATM(15,0); //left motor DIR Forward
 //NRF_TIMER1->TASKS_STOP=1;
//debug_printf("Right \n",data);
}

GPIO_WRITE_ATM(21,1);
NVIC_EnableIRQ(UART0_IRQn);
}

