

University of Southern Indiana

 Pott College of Science, Engineering, and Education

 Engineering Department

8600 University Boulevard

 Evansville, Indiana 47712

Automated Medicine Sorter/Counter/Cutter

Brayden Scarlett and Langdon Briles

ECE 471 - Senior Project

Fall 2021

i

Acknowledgements

In this section, we would like to acknowledge,

Devon Rolfe

He was an original member of our team and he, unfortunately, did not enroll for the Fall of 2021

and is no longer part of the team. He helped us get the project started and had important input at

the beginning of this project.

Dr. Paul Kuban and the USI Department of Engineering

He is the head of the engineering department and together with the Department of Engineering,

facilitated and enabled this project to be done.

Dr. Ronald Diersing

He is a ECE engineering professor. In the initial stages of the project, our team did not have a

concrete idea for a project. His criticisms and advice pushed us to pick a more concise project idea

as shown in this report.

Dr. Julian Davis

He is the customer of the project. He provided the idea for the project as well as numerous feedback

on design ideas and choices. He also provided support to team outside of project.

Dr. Mina Asghari Heidarlou

She is an ECE engineering professor and this project’s advisor. She ensured we kept on track with

our project and provided additional support such as proofreading, practice sessions, etc.

ii

Abstract

The purpose of this project is to design and build an automated pill sorter. The pills will be

sorted into a typical seven-day pill planner with AM and PM containers. Additionally, the project

will take advantage of a cutter system to sort pills by half dose as specified by the user and store

the other half for later use. The project will also allow user input from an onboard and computer-

based user interface regarding pill medication, dosage, and regimen. These actions will be

controlled by a NORDIC Semiconductor microcontroller which will retain pill data, operate the

user interface, and control when doses are sorted via a master and minion system with two

Arduino microcontrollers which will control the sorting and cutting systems, respectively. The

project is also designed with user modularity in mind, allowing the user to sort as few as one type

of pill or as many as six types. Finally, the cutter system being used has already been designed by

a previous team. This cutter system was designed to cut pills in half with a minimum amount of

mass loss. There were performance issues with the cutter and dispensing systems. However, both

systems ultimately performed their desired functions, and the project achieved all goals set for

itself. The contents of this report will detail the development and design of the project and its

results.

iii

Table of Contents

Acknowledgements .. i

Abstract ... ii

List of Figures ... v

List of Tables ... vi

List of Equations .. vi

1. Introduction ... 1

2. Background ... 2

2.1 Products on the Market ... 2

2.2 Cutter Design... 3

2.3 Microcontrollers .. 5

2.4 TWI/I2C Communication ... 7

2.5 Motors ... 9

3. Design ... 12

3.1 Concepts Generated... 12

3.2 Design Scope ... 16

3.3 Design Overview ... 17

3.4 Master Control System .. 20

3.5 User Interface .. 25

3.6 Upper Level Sorting System (ULSS) .. 27

3.6.1 ULSS Programming ... 28

3.6.2 Pill Holder Design .. 31

3.6.3 Drum Design... 36

3.6.4 Funnel Design ... 39

3.6.5 Cutter Design .. 40

3.7 Lower Level Sorting System (LLSS) .. 41

3.7.1 LLSS Programming .. 45

3.8 Power Supply .. 46

4. Construction .. 48

5. Testing... 52

5.1 Shaker Test .. 52

5.2 Sorting Test ... 53

5.3 Cutting Test ... 54

6. Budget ... 58

7. Requirement Specifications .. 59

iv

7.1 Environmental ... 59

7.2 Public Health, Safety, and Welfare ... 59

7.3 Global/Political.. 59

7.4 Ethical and Professional .. 60

8. Lessons Learned.. 60

9. Future Considerations ... 62

10. Teamwork ... 64

11. Conclusion .. 65

References ... 66

Appendix ... 67

Appendix A: Failure Modes and Effect Analysis ... 67

Appendix B: ABET Outcome 2, Design Factor Considerations ... 68

Appendix C: Master Control System Code ... 69

Appendix C.1: Master Control Code ... 69

Appendix C.2: Keypad Code ... 77

Appendix C.3: LCD Code ... 80

Appendix D: ULSS Code .. 112

Appendix E: LLSS Code ... 122

Appendix F: SolidWorks Drawings .. 128

Appendix G: Wiring Diagram ... 141

v

List of Figures

Figure 1: Commercial Automated Pill Dispensers ... 2

Figure 2: Pill cutter design from previous team.. 3

Figure 3: nRF51 Microcontroller .. 5

Figure 4: Arduino Nano .. 6

Figure 5: I2C Data Transmission .. 8

Figure 6: A4988 Stepper Controller ... 10

Figure 7: Relay .. 11

Figure 8: Design Concept 1 .. 13

Figure 9: Design Concept 2 .. 14

Figure 10: Design Concept 3 .. 15

Figure 11: Design Overview ... 18

Figure 12: System Hierarchy .. 19

Figure 13: Master Control Unit Block Diagram ... 21

Figure 14: LCD with I2C Module .. 25

Figure 15: 4x4 Keypad.. 26

Figure 16: Upper Level Sorting System Overview... 27

Figure 17: ULSS Final Design .. 27

Figure 18: Upper Level Sorting System Program Block Diagram ... 28

Figure 19: Main Pill Holder First Design ... 31

Figure 20: Main Pill Holder Second Design ... 32

Figure 21: Main Pill Holder Third Design ... 33

Figure 22: Main Pill Holder Final Design ... 34

Figure 23: Main Pill Holder .. 35

Figure 24: Half Pill Holder Design ... 35

Figure 25: Drum Design One .. 36

Figure 26: Drum Desgin Two ... 37

Figure 27: Drum Final Design .. 38

Figure 28: Funnel Design ... 39

Figure 29: Cutter System .. 40

Figure 30: Lower Level Sorting System Overview .. 41

Figure 31: Lower Level Sortying System Final Design ... 42

Figure 32: Free Body Diagram of rail system .. 44

Figure 33: Lower Level Sorting System Program Block Diagram... 45

Figure 34: Final Design .. 48

Figure 35: Power Bus.. 49

Figure 36: I2C/TWI Bus ... 49

Figure 37: Stepper Control Board ... 50

Figure 38: Relay Control Board .. 51

Figure 39: Cut Pills Results(Qualitative) .. 55

vi

 List of Tables

Table 1: Mass loss of cutter design ... 4

Table 2: Pill dosage for individual slices .. 22

Table 3: Pill dosage for individual days and times of days .. 23

Table 4: TWI 8-bit Data Line ... 24

Table 5: Shaker Test Results... 52

Table 6: Sorting Test Results .. 53

Table 7: Cut Pills Results(Quantitative) ... 55

Table 8: Bill of Materials .. 57

Table A.1: Failure Modes and Effects Analysis ... 67

Table B.1: Design Factors Considered ... 68

List of Equations

Equation 3.1: Torque .. 44

Equation 5.1: % Mass Loss ... 54

Equatoin 5.2: % Mass of Total Mass .. 55

1

1. Introduction

Managing prescribed medication is a common fact of life for many Americans. About 60%

of Americans take some form of prescription medication and at least 25% take at least 4 different

prescriptions with most being over the age of 50. [1][2][6] Pills are among the most common type of

prescription medication. In order to make sure they take their prescriptions correctly and on time,

many employ the use of a pill planner which they can use to sort their prescriptions for the week.

Additionally, some prescriptions can be costly, costing in the hundreds for a month’s worth. In

order to save money, many buy their prescriptions at a higher dose (usually double their

prescription) in bulk. They then cut the pills to their prescribed dose. Cutting and then sorting their

prescriptions can be a time-consuming process and difficult process for those over the age of 50

with difficulty increasing with age due to age related problems such as physical disabilities,

deteriorating motor skills, and mental degradation. These issues also have the dangerous potential

to enable over or underdosing of their prescriptions.

The objective of this project is to design a device that can automatically sort prescription

pills into an ordinary 7-day, night and day pill planner. Additionally, a cutting function that can

cut pills in half, when necessary, must also be included. The project serves to save time for the

user by automatically sorting and cutting their pill prescriptions as well as help prevent any

potential mistakes in dosing. The deliverables for this project will include a working prototype of

the machine as a proof of concept. Additionally, the scope of the project is limited to just the

sorting mechanism and incorporation of the cutting system. The stake holders for this project

are the University of Southern Indiana and the project’s customer: Dr. Julian L. Davis. This

report includes background market research, concept selection, its detailed design implementation,

and testing results.

2

2. Background

2.1 Products on the Market

Figure 1: Commercial Automated Pill Dispensers (From left to right: Philips, pria, MedaCube)[3]

 There are only a handful of automated pill dispensers on the consumer market. From

research into each of these products, several conclusions about their designs were found. Firstly,

all dispensers are capable of sorting and dispensing a large variety of pills with the largest amount

being up to 16 different pills. The dispensers only sort and dispense pills for very specific times as

defined by the user. Additionally, all dispensers include some form of E-Health integration with

the ability to notify caregivers and physicians. Most dispensers include a rotational and radial

storage system for storing and sorting pills. All dispensers are within a cubic foot with the largest

being the MediCube with a volume of 13 cubic inches. Finally, none of the dispensers on the

market have the ability to cut pills into half doses if necessary. These conclusions were taken into

account when designing the automated sorting system. The price range for these dispensers range

from $300 USD to $1200 USD[3].

3

2.2 Cutter Design

The design of the project builds upon that of a past team, which was merely a pill cutter.

The past team’s project is shown in the Figure 2 below. After reviewing the design, we found both

positives and negatives. Positives include a simple, fast, and efficient method of cutting pills and

the use of a drum design to grab pills for cutting that is gravity fed. Negatives include an unreliable

drum design that does not reliably grab pills and an inability to account for more than one shape

or size of pill.

Figure 2: Pill cutter design from previous team.[7]

The system above uses a funnel to deliver pills into a rotating pill hold that rotates to the

blade, cutting the pill in half with minimal loss of mass of less than 10%[7][5] as required by FDA

regulation. This is done by using a 12V brushed motor to spin a pill holder that collects one pill,

where the motor spins a drum clockwise that rotates it towards the cutter. A 6V 3-phase brushless

4

motor is used to run the blade of the cutter to cut pills in half that the pill holder brings towards it.

These motors are controlled via an Arduino.

The past team’s project also gave some useful information on the mass loss when the blade

cuts the pill in half. Table 1 summarizes the experiments done for measuring mass loss after cutting

pills in half. The optimal speed to achieve these results was found to be around 20,000 RPM[7].

This speed was regulated via an electronic speed controller.

Table 1: Mass loss of cutter design.[7]

 This design was only designed to cut a certain type of pill. According to their research,

extended release and controlled release pills and capsules, coated pills, and critical dosage type

pills should not be cut. As such, only compressed tablet pills that do not fall under the listed

categories are to be cut.

5

2.3 Microcontrollers

Figure 3: nRF51 Microcontroller

In order to control the motors and facilitate the actual functions of the machine, a

microcontroller needed to be selected. Two microcontrollers were selected. The first

microcontroller that was selected was the Nordic Semiconductor nRF51 microcontroller as shown

in Figure 3. There are several reasons this board was selected over the more popular boards such

as Arduino. Firstly, there was an increased familiarity with this board and its capabilities as it was

used in a microcontroller class by one of the team members. Additionally, the board comes with a

dedicated software development kit which has rudimentary implementation and examples of all

its peripherals, free to manipulate and change as needed. Secondly, it has over 31 modular GPIO

pins that can each be customized for specific functions, mapped to specific peripherals of the

board, or interrupts. Thirdly, the board has over 6 software interrupts. These interrupts were

6

integral for the design and execution of the control system software. Fourthly, the most important

reason for selecting this microcontroller is the board’s ability to allow direct manipulation of

registers. A register is a unique partition of data in the microcontroller RAM. This access to

registers allows for more complex and custom functions to be created. This proved especially

important for the implementation of the communication protocol used, I2C or two wire

communication. Lastly, the board has dedicated I2C functionality, which is the communication

protocol that was chosen to be used.

Figure 4: Arduino Nano

The second microcontroller selected was the Arduino Nano as shown in Figure 4. There

are several reasons for choosing this microcontroller. Firstly, given that the project has a size

constraint, the small size of the Nano allows the project to save space for more important functions

like the motors and for creative placement of the microcontroller. Secondly, the Nano is very

cheap: costing about 10 USD. This helps cut down on overall construction costs and lowers the

cost of replacement should a Nano break. Thirdly, the Nano comes with dedicated I2C

functionality, which is the communication protocol of choice for the project. Lastly, Arduino

boards are supported by a dedicated integrated development environment and a plethora of

community made libraries to use when programming the Nano to control things like servos and

stepper motors. This makes development of the control code much simpler.

7

2.4 TWI/I2C Communication

This project plans to have two different microcontrollers communicating with each other;

as such, a communication protocol had to be selected. For this project, it was decided that I2C or

two wire, TWI, communication was to be used. There are 2 main reasons for doing so. Firstly, as

the name suggests, it allows data to be transferred and received over only two wires. Secondly,

these 2 wires can be shared with all respective masters and minions through a bus system. As such,

2 and only 2 wires are necessary for a master/minion system. This is advantageous as it saves pin

space for other functions and simplifies wiring. Other communication protocols like serial

peripheral interfaces need 4 wires for it to function properly. Additionally, other communication

protocols such as serial peripheral interfaces need additional wires for each device connected. In

the case for serial peripheral interfaces, if 3 minion devices were used, then at least 7 wires will be

needed. A UART protocol, however, can only connect two devices and as such cannot be used in

a master/minion setup. However, serial peripheral interfaces do have two advantages: it has a very

high speed limit for transmitting and receiving (over 10 Mbps), and it operates at full duplex which

allows transmitting and receiving to happen simultaneously. I2C on the other hand only operates

at half duplex which only allows one action of transmitting or receiving to happen and has a low

speed limit for transmitting and receiving (100Kbps to 400Kbps). However, since the project is

only transmitting small amounts of data at a time and operates sequentially, speed and

simultaneous operations are not needed. As such, I2C is the best communication protocol for the

project.

8

Figure 5: I2C Data Transmission [8]

As shown in Figure 5, the functionality of I2C is simple, one wire is responsible for the

data. This is called the data line. Since this protocol is synchronous, the other wire is responsible

for synchronizing the minions with the master’s clock speed. This is called the clock line. In the

case of this project, the subsystems operate at 100Kbps, so that will be the clock speed for the

clock line. Additionally, the max number of bits that can be transferred at a time are 8 bits. In order

to differentiate the different minions from one another, unique address bits are assigned to each

minion. These addresses are defined via hardware or software of the minion. These address bits

are 7 bits long. In order to communicate with a minion, the master first sends out a command bit

followed by the address bits for the minion it wants to communicate with. Once this 8-bit line of

data is received, the minion will send an ACK or acknowledge bit, which lets the master know that

it is ready to transmit or receive. From then on, communication between the master and minion is

established and other minions cannot be accessed. In the case of transmitting, the master sends the

8-bit line of data bit by bit, from least significant to most significant bit. With each bit sent, the

master waits for an ACK bit from the minion. Once the master receives the ACK bit, the next bit

of data is sent. This continues until all 8 bits of data are transmitted. From then, the master sends

a command bit to end communication with the minion. This frees up the bus for the master to

9

interact with the other minions as necessary. In the case of receiving, the same process applies

except that the minion is the one that transmits the data bit by bit. When designing the

communication protocol, the project made use of the already provided TWI examples provided by

NORDIC Semiconductor.

2.5 Motors

In order to actuate the necessary functions of this project, a variety of motors were chosen.

Stepper motors were chosen to actuate the pill holders. Specifically, the project uses NEMA 17

stepper motors. These are the most common and widely used class of stepper motors for small

scale electronics. This standard designates the size of the stepper motor and the angle of

displacement for each step. In the case of a NEMA 17 stepper, the steppers are 1.7x1.7 in and have

a 1.8 degree step angle[4]. There are several reasons stepper motors were chosen. Firstly, and most

importantly, stepper motors are able to perform precise and repeatable movements in an open loop

system. This means that the stepper can move to and from a precise location without any outside

sensor input like an encoder. This saves space in the machine and on the microcontroller as well

as lowering construction costs as no extra sensors are necessary.

The way it accomplishes this is simple. Inside the stepper there are two sets of windings

that constitute an electromagnet. The outer windings are called the stator as they are stationary.

These windings are attached to small gear like teeth pointed toward the inner set of windings.

These inner set of windings are the rotor as it rotates. These windings are attached to small gear

like teeth that are pointed towards the stator teeth. These teeth are displaced from each other by a

very small degree. In the case of the NEMA 17 stepper, this displacement is 1.8 degrees. When

the stator is energized by a current, it induces a magnet field on points of the teeth. Additionally,

10

this magnetic field induces a current in the rotor, which in turn creates an opposing magnetic field

which branches out to the teeth on the rotor. These teeth have opposing poles. So, when a pulse of

current is sent to the motor, the rotor rotates to align the polarity of the teeth of the stator and rotor.

This is called a step. Each step rotates the rotor 1.8 degrees in the case of the NEMA 17 stepper.

So, in order to rotate 360 degrees, 200 steps must be applied to the stepper. With these steps, the

precise position and even speed of the stepper can be easily controlled. The direction of the rotation

is determined by the polarity of the current. Other motors do not feature these teeth and as such

cannot reliably move to precise positions or speeds without an outside sensor in a closed feedback

loop. Using the stepper allows the pill holders to have pre-mapped locations for each pill that it

needs to rotate to in order to dispense the pill. These stepper motors are rated for 1.5A and 12V.

Figure 6: A4988 Stepper Controller (Left to Right: Top and Bottom)

In order to control the stepper motor, a stepper controller was needed. The A4988 was

chosen as the controller as shown in Figure 6. This chip was chosen for 2 reasons. Firstly, it has a

built in current limiter which throttles the current depending on the position of the adjustable pot.

This provides protection to motor in case of power surges. Secondly, it allows for micro-stepping.

Micro-stepping is where the steps of a stepper motor are divided into even smaller steps by a

certain factor. The A4988 is capable of dividing the steps by up to a factor of 16. However, the

project decided to use a factor of 4. As such, the total steps needed for a full rotation was changed

11

from 200 steps to 800 steps. This allows for more precise control of the stepper. It accomplishes

this by only energizing the coils by a fraction of the current needed for a full step. This stepper

controller is rated for 5V.

In order to actuate the blade to cut pills in half, a 3-phase brushless motor was chosen. It

was chosen because that was the motor that the cutter team chose to achieve the required speed to

cut the pills in half efficiently. As such, no other motor was considered for the cutter. This motor

is controlled by an electronic speed controller in order to make sure it maintains the required speed

to cut the pills as defined by the cutter team. This motor is rated for 1.5A and 12V.

Additionally, the motor to actuate the drum that was chosen was a 12V brushed DC geared

motor that is geared for 30 RPM. Again, this was chosen because this was the motor chosen by the

pill cutter team to actuate drum and as such, no other motor was considered. However, in order to

control the direction of the motor, relays were used in a H-bridge configuration. It is called such

because the circuit looks like an H. An additional relay was also added to control power to the

motor as shown in Figure 7 below. This motor is rated for 1.5A and 12V.

Figure 7: Relay (Left to Right: Top and Bottom)

12

3. Design

This section details the design process of the project and its subsystems as well as the

final designs for all.

3.1 Concepts Generated

We first brainstormed ideas for the funneling and cutting system. Based on the previous

team's design, the goal was to make the funneling system smaller, as well as the overall design.

Then we moved on to cutting the pill. The first idea was to turn the pill holder right if it needs

to stay whole, but turn it left if it needs to be cut by blade. A second idea was to simply cut all the

pills and have the sorter/counter add up the correct amount. Another idea was to create a funnel

with two holes and a flap that moves a pill to either side based on whether it needs to be cut or not.

As a result, we decided to go with turning right if the pill needs to stay whole and turning left if

it should be cut. This was the easiest way to achieve our aim.

To sort the pills, a tray was inserted into and taken out of the system. The next step was to

determine how the entire system is going to be set up to make the most sense and also to be the

easiest to sort. All of the ideas were similar in their set up and ultimately had the same outcome.

There were three insertable/removable boxes that cut and sorted pills based on their required

amounts. It is then put into the capsule at the bottom of the box with a servo-controlled door. This

idea is used for all three boxes. So, when the dose for each pill is at the desired amount then all

three servos open the doors and drop the pills into a funnel that leads to a specific time of day in a

tray that catches the pills. After that is complete the system resets for the next time of day and

continues doing so until the 7 days of the week for both Am and PM are full.

13

The first design generated focused more on the basics of sorting a whole or cut pills.

Figure 8: Design Concept 1

Since this was the first design it was very basic and did not account for some of the parts on the

scope. First being it can only sort one pill at a time. However, this was a good first concept to put

the team in the right direction with focus on the main parts of the project of cutting and sorting.

The draw backs showed that something needed to be done with the cut pills when one half needed

to be dispensed and not both halves. And the sorting part doesn’t have anything to show how it

works or really had any thought behind it. It was just known that it needed to move to sort the

pills.

The second concept tried to increase the number of different pills that could go into the system.

14

Figure 9: Design Concept 2

The second concept helped increase the number of different pills that can be inputted into the

system which each pill section being interchangeable. This means that the customer could take

that little box out on the top and replace it with another box for a different pill. And the idea of

how to move the pill planner at the bottom to catch the pill was brainstormed on how to move it

with no final idea put in place, but it got the team thinking about how to do it.

The problem with this design was the cost effectiveness and the connections. With how every box

would be made, each one would have to have a cutter in it and that didn’t seem like it was worth

the time and money to implement it. Then the problem on how to connect the individual boxes to

15

the whole system came into play. The electrical connects and the physical ones would cause more

problems over time making it harder to operate at 100%.

The final design that the team decided on was the third design concept.

Figure 10: Design Concept 3

The third design helped fix the problems in the first two designs such as the number of different

pills that could be put into the system. The pill holder was made to have a different number of

slots in it for the number of pills. Then the cutter is used for all pills making it more cost effective

16

than the second design. As well as the sorting part being figured out. Two stepper motors being

used for a different axis to move the pill planner for the specific time of day for the pills to be

sorted into.

The first draw back is that this system will be made for a specific pill planner and not everyone’s

pill planner will fit or work with this system.

3.2 Design Scope

 From market research, previous team considerations, and objectives defined by the

customer, several requirements were defined to narrow down the scope of the project.

1. Shall automatically sort pills into a standard sized 7-day, AM and PM pill planner.

2. Shall cut pills in half, store, and dispense when necessary.

3. Only compressed tablet type pills shall be cut and sorted.

4. Shall sort up to 6 different shapes and sizes of pills.

5. Shall allow for user modularity.

6. Design shall be around 1 cubic foot.

It was decided that the machine would be designed to sort into standard sized 7-day pill planer

that has AM and PM slots. There are two reasons for doing so. Firstly, most people who manually

sort their pills already use these pill planners, with the 7-day variant being the most common. This

allows for those that still use manual pill planners to still use their pill planners to take their pills

when they need to. Additionally, this also allows for the potential addition being able to sort for

specific times instead like those on the consumer market. The customer made it a requirement that

the machine be able to cut pills in half. As such, this project will incorporate the previous team’s

cutter design. The only modifications made to the design will be the feeding mechanism and the

drum. Since the project is using the previous team’s cutter design, only compressed tablet type

17

pills will be used as defined by the previous team’s design requirements. The customer also made

it a requirement that the machine must cut and sort at least 6 different shapes and sizes of pills. As

such, it was decided that 6 pills would by the upper limit for the design in order to simplify design.

Given that many users have many different pill prescriptions of varying shapes and sizes, it was

decided that a degree of modularity should be included. That way, the user can customize the

machine for their own unique needs and preferences. Since this machine will be designed for use

by a regular layman, it was decided that the device must be designed in a way that is comfortable

for a customer. Users will more than likely put this in their common area or kitchens with other

household appliances and as such, these appliances and other consumer pill dispensers were used

to define size regulations for the design. From market research, it was determined that the design

must be around 1 cubic foot.

3.3 Design Overview

Figure 11: Design Overview

18

 As seen in Figure 11, the design of project is broken up into 4 sub-systems: the master

control system, user interface, upper level sorting system or ULSS, and lower sorting system or

LLSS. The master control system controls the other 3 sub-systems in a master/minion set up. It is

also responsible storing data about pill doses and regimes, and transferring this data to the ULSS

and LLSS as needed in order to perform the machine’s sorting function. The user interface allows

a user to interact with the machine via being able to input pill data and starting the sorting process.

The ULSS is responsible for storing and dispensing pills when needed. It is also responsible for

cutting pills in half and storing one of the halves for later use as necessary. Lastly, the LLSS is

responsible for positioning the pill planner so that its respective compartments receive the dose of

pills that is required. The system hierarchy is shown in Figure 12 below.

19

Figure 12: System Hierarchy

 Normal operation of the system is as follows. Once the machine is powered up, the user

interface will turn on and prompt the user to either input pill data or start the sorting process. If

data input is selected, then the user interface will guide the user through all the necessary

information needed to properly sort their prescription pills. If the start sorting is selected, then the

master control unit will then start the sorting process. It will first tell the LLSS to position the pill

planner to the first position so that it can sort the dosages for that particular compartment or time

20

of day. For a typical pill planner, the first compartment that will be sorted will be the Sunday AM

one. Once the compartment is in place, the LLSS will notify the master control unit. Then the

master control unit will transmit the dosage data for Sunday AM to the ULSS. This data includes

which pills are being sorted, the dosage, and whether a half-dosage is needed or not. Once the

ULSS receives this data, it will parse it into the necessary information needed to begin dispensing

pills. It will first align the pill holder compartment for the first pill being sorted with the drum that

grabs pills. Once aligned it will then actuate the drum: rotating it counterclockwise where it will

brag one pill from the holder and then deposit down a funnel to the pill planner compartment. This

will continue until all doses are dispensed. Then it will decide if a pill needs to be cut or not. If

not, then it moves on to the next pill. If one does, then the cutter motor will be activated, and the

drum will rotate clockwise and grab one pill, bringing it to the cutter to be cut. One half of the pill

falls down to the funnel while the other half is deposited into a smaller holder for future use. If

there is already a half dose available, that dose will be dispensed, and no other pill will be cut. This

process will repeat for all pills that are being sorted for the pill planner compartment. Once

dispensing and cutting are done, the ULSS will notify the master control unit. From then on, the

entire process continues until all 14 compartments of the pill planner have been sorted. Once

complete, the LLSS moves the pill planner into a position for retrieval from the user.

A detailed explanation of each of the subsystems and their processes are included in the

following sections.

3.4 Master Control System

 The master control system is responsible for controlling and coordinating the other

subsystems of the machine. The master control system is also responsible for storing and

21

transmitting the necessary pill data such as dosage and their respective regime or when the pill

needs to be taken. The nRF51 was selected as the microcontroller for the master control system.

Figure 13: Master Control Unit Block Diagram

 Normal operation of the master control system is as follows in Figure 10. Firstly, once

power is enabled, the master controller unit goes through initialization of variables and data arrays

that will be used for storing pill data. Then the I2C peripheral for the LCD and data lines are

initialized as well as the LCD for the user interface. Once initializations are done, the program

falls into a continuous loop where the user interface interrupt is triggered. This interrupt is

responsible for controlling the display and visual feedback of the user interface as well as

determining whether or not to input pill data or start sorting. Additionally, the I2C peripheral for

22

the data line is disabled while the I2C for the LCD is enabled. This is done because both peripherals

share the same I2C bus line and pins, so they both cannot function at the same time.

If input pill data is selected, then the display will prompt the user to input the dosage for 1

pill for the first pill. These inputs are from the keypad with each button being mapped to a 4x4

array. The dosage is in milligrams (mg). The max dosage is 4 significant figures. A for loop is

used to determine what the number input is. The number of inputs and their respective numbers

are recorded with the first number being input starting at 0 and the last number input ending at 3.

Once the user presses the ‘enter’ button on the keypad, the numbers will then be parsed into their

correct dosage. For example, if 3 numbers were input, then the dosage is a number with 3

significant figures. In order to parse this dosage, the first number will be multiplied by 10 to the

power of 2. The second number will be multiplied by 10 to the power of 1 and added to the product

of the first number. Lastly, the third number will be multiplied by 10 to the power of 0 and added

to the sum of the last two numbers. The resulting number is then passed to its respective position

in a 1x6 data array with each column corresponding to the dosage of one pill up to six different

pills as shown in Table 2 below.

Table 2: Pill dosage for individual slices.

 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6

Dosage

(mg) # # # # # #

Once the dosage for 1 pill is input, the display will then prompt the user to input the dosage

for the first time of day. In the case of this project, the first time of day will be Sunday AM. The

method of inputting numbers is the same as inputting the dosage for one pill. Once the number has

been input and parsed, it will be passed to its respective position in a 6x14 data array with the rows

23

of the array being the individual pills and the columns being the time of day for the dosage starting

at Sunday AM and ending at Saturday PM as shown in Table 3 below. This process will continue

until all positions for the respective pill row are filled. Once this is complete, the user interface

will loop back for the first prompt of inputting pill dosage for one pill for the next pill. The entire

process will repeat until all six pills are accounted for.

Table 3: Pill dosage for individual days and time of days.

Sunday

AM Sunday PM Monday AM - - -> Saturday AM Saturday PM

Slice 1 (mg) # # # - - -> # #

Slice 2 (mg) # # # - - -> # #

Slice 3 (mg) # # # - - -> # #

Slice 4 (mg) # # # - - -> # #

Slice 5 (mg) # # # - - -> # #

Slice 6 (mg) # # # - - -> # #

Once all 6 pills are accounted for, the user interface loops back to the beginning prompts

of starting the sorting process or inputting pill data. If starting the sorting process is selected, then

the interrupt for controlling the LLSS will be triggered. The I2C for the LCD is disabled and the

I2C for the data line is enabled. In this interrupt, the master control unit will send a command to

the LLSS to position the pill planner for the respective compartment to be sorted. Once it receives

confirmation from the LLSS that the pill planner is in position, the interrupt ends and the interrupt

for controlling the ULSS will be triggered. In this interrupt, the master controller sends the

necessary data for the ULSS to sort the pills for pill planner’s specific compartment that will be

sorted. This compartment is associated with a specific time of day. This data is transferred in an

8-bit line as shown in Table 4 below. The first three least significant bits is the respective pill being

sorted. The next four significant bits is the dosage being sorted or number of pills being dispensed

for that time of day. In order to parse this dosage into the number of pills being sorted, the

24

microcontroller takes the dosage for the time of day being sorted and divides it by the dosage of 1

pill. The resulting quotient is the number of pills being dispensed. This number is then added to

the 8-bit line. Additionally, a 0 bit is added as the last bit to the line to tell the ULSS not to cut a

pill. If the quotient is not a whole number, then the number is rounded down to the nearest whole

number which is used as the number of pills being dispensed. Then a 1 bit is added as the last bit

to the line to tell the ULSS to cut a pill. Once the 8-bit line is parsed, the master control unit

transmits it to the ULSS. This process repeats for the 5 other pills for that time of day. Once all 6

data lines are transmitted, the master waits for the ULSS to send a confirmation that the sorting is

done.

Table 4: TWI 8-Bit Data Line

Cut/No Cut Number of Pills to be Sorted Slice Number

Bit Bit Bit Bit Bit Bit Bit Bit

Once received, the master once again triggers the LLSS interrupt to maneuver the pill

planner for the next time of day compartment. Then the ULSS interrupt is triggered and the same

process for transmitting the pill data is repeated for the next time of day. This entire process is

repeated until all 14 compartments on the pill planner have been sorted. Once complete, the master

sends a final completion command to the LLSS to tell it to maneuver the pill planner into a position

for user retrieval. For a detailed look at the programming design, please refer to the appendix.

25

3.5 User Interface

Figure 14: LCD with I2C Module (Left to Right: Top and Bottom)

The user interface is comprised of an LCD screen with an I2C communication adapter and

a 4x4 keypad as shown in Figure 14. The LCD is rated for 5V. The LCD functions by inputting a

series of 8-bit lines of commands and data to write specific characters to the screen. These data

bits are already predefined by the LCD. The master control unit handles writing the individual 8-

bit lines to the LCD that produce the necessary characters for visual feedback of the user interface.

These commands are parsed by a I2C communication adapter which takes necessary 8-bit

commands and translates them into usable functions for the LCD to follow. Since the adapter was

made for use with Arduino, the team had to develop their own I2C communication protocol for

the module. Since Arduino is an open source project, the developers of the module already had a

library freely available. By studying the communication code in the library, which was made for

the Arduino IDE, the team was able to reverse engineer and adapt it for use with the nRF51

software. For a detailed look at the programming design, please refer to the appendix.

I2C Module

26

Figure 15: 4 x 4 Keypad

 The keypad functions by having all the rows and columns mapped to 4 pins, respectively

as shown in Figure 15. The buttons are the cross sections of the rows and columns and are simple

normally open buttons so that when a button is pushed, the circuit for that button’s respective row

and column is complete. In order to detect which button is pressed, each row and column pin are

mapped to a 4x4 matrix with the rows being the rows of the keypad and the columns being the

columns of the keypad. The pins for the rows start out as output pins and the pins for the columns

start out as inputs. When a button is pressed, the circuit for its respective row and column is

complete. The master control unit will record which column pin received an input. Then the rows

and columns are immediately switched, with the rows becoming inputs and the columns becoming

outputs. Then the master control unit records which row pin received the input. From there, the

row and column pins are referenced to the 4x4 array to determine which button was pressed. Lastly,

the row and column pins are reset to their initial input and output designations. For a detailed look

at the programming design, please refer to the appendix.

Option 1 Button

Option 2 Button

Delete Button Submit Button

27

3.6 Upper Level Sorting System (ULSS)

In order to actuate the motors and control what pills are sorted and how many, a

microcontroller is used. It was decided that the best microcontroller to use for this subsystem is a

Arduino Nano microcontroller. This microcontroller actuates the motors necessary for sorting

and dispensing the pills.

Figure 16: Upper Level Sorting System Overview

 The upper level sorting system, or ULSS, is responsible for dispensing and cutting pills as

necessary. As seen in Figure 16, the Arduino controls the various motors that actuates the functions

of the ULSS using pre-mapped positions. The following sections will explain the ULSS and its

functions in detail. Figure 17 below shows the final design of the ULSS.

Figure 17: ULSS Final Design

28

3.6.1 ULSS Programming

Figure 18: Upper Level Sorting System Program Block Diagram

29

 Normal operation of the ULSS as shown in Figure 18 is as follows. Firstly, all variables

and constants are initialized. The stepper motors are disabled in order to prevent noise from the

Arduino startup moving them out of step. The cutter motor is then calibrated using the method

from the previous cutter team. TWI event functions and the digital address of the Arduino are then

initialized. Once calibration is complete, the stepper motors are then reenabled. The Arduino waits

for a data input from the master control system via the TWI connection. Once the Arduino receives

a data line of pill info, it will parse it into its respective data of pill slice, number pills to be sorted,

and if a pill will be cut or not. This will repeat five more times until all six slices for the time of

day being sorted are accounted for. The number of pills being sorted and whether to cut a pill or

not are stored in separate arrays with their position associated with their respective slice number.

Once all six slices are accounted for, the main sorting code will initialize in the main loop of the

code. It will start at slice position one. Firstly, it will activate a shaking mechanism where the

stepper motor for the main pill holder will rotate back and forth rapidly twenty times. This is to

make sure the pills are properly slotted for dispensing and to clear any potential blockages. The

number of stepper steps used for the rotations was experimentally found to be 25 steps. For more

details on how this value was derived, please refer to testing section of this report. Once the shaking

is complete, the dispensing will then commence. A for loop is then called where the end condition

is the number pills that must be dispensed. Firstly, the stepper motors are disabled. This is done to

save power and to provide the drum motor with enough current to function because the stepper

motor each draw too much current from the power bus. Once the steppers are disabled, the drum

motor will then be activated to rotate counter-clockwise where it will grab one pill from the main

holder and then dispense it. This will continue until all pills have been dispensed. Once all pills

have been dispensed, the stepper motors will be reenabled and it will then move on to an if

30

statement where it will decide whether to cut a pill or not. If no pill is being cut, then nothing will

be done. If a pill is being cut, then it will call another if statement where it will determine whether

a pill for that slice has already been cut. If no pill has been cut, then the machine will proceed to

cutting a pill. Firstly, the stepper motors are disabled to conserve power and the shaking function

is called. Once the shaking is finished, the cutter motor is activated where it will gradually increase

its speed up to the required 20,000 RPM. Once the cutter motor is up to the required speed, the

drum motor is activated to rotate clockwise where it will grab one pill from the main holder and

bring it towards the cutter to be cut in half. Once the pill has been cut, a 1 will be added to an array

in the position of the current slice recording that a pill has been cut. This value will be used to

dispense the other half of the pill that has been cut instead of cutting a new pill. The steppers are

also reenabled. If a pill has been recorded to have already been cut for that slice, then the micro

servo will be activated to open the gate for current slice which will dispense the cut pill. Once both

the dispensing and cutting processes have been completed, the main holder and the half pill holder

will both rotate to the next slice counter-clockwise. The main holder rotates 54 degrees or 120

steps while the half pill holder rotates 60 degrees or 133 steps. These values are dependent on the

design of the respective pill holders and their angle of displacement between slots of each slice.

This process will repeat for each slice until all six slices are accounted for. Once all six slices have

been sorted, both pill holders will rotate clockwise back to their starting positions where slice one

is aligned with the dispensing drum. The Arduino will then send a confirmation bit to the master

control system via TWI to notify it that the sorting is done. For a detailed look at the programming

design, please refer to the appendix.

31

3.6.2 Pill Holder Design

 This section will detail the development of the main and cut pill holders and their final

designs. The design process for the main pill holder iterative with four different versions including

the final version.

Figure 19: Main Pill Holder First Design

 The first holder design was experimenting with potential modularity of the slices and

position of the slots for the pills. As shown in Figure 16, this design included removable walls.

The intention for this was that the user could combine the slices for one large slice if they desired.

These walls allowed for a maximum of four slices or four different pills. Additionally, each slice

has a slot like hole in the shape of two type of pills: rectangular and circular pills, as these are the

most common shapes of pills. However, this design included several flaws. Firstly, with the way

the walls were held down to the base, it would make it impractical combine the slices. Additionally,

the thickness of the base would not let the pills be slotted correctly; especially with the rectangular

pills as they could sometimes get slotted in sideways rather than flat. Lastly, since the slices are

flat, there is no way to guarantee that the pills will even be slotted in the holes at all. As such, this

design was not accepted.

32

Figure 20: Main Pill Holder Second Design

 As shown in Figure 20, the second holder design gets rid of the removable walls in favor

of solid walls attached to the base. Additionally, the slotted holes are moved towards the end of

the outer walls. This was done in anticipation of using the drum to retrieve pills for dispensing.

Finally, the walls were tapered towards the slots, forming a sort of funnel. This allows for the pills

to fall or slide towards the slots to be slotted without any further assistance. However, there is one

flaw with this design. For the slices with the rectangular pills, sometimes the pills crowd into the

slot where even a shaking movement is not enough to dislodge them. As such, this design was

deemed unsuitable.

33

Figure 21: Main Pill Holder Third Design

 As shown in Figure 21, the third holder design rectifies the flaw from the seconds design

by adding a small cliff over the slot that forms a cave like structure. The entrance to this cave has

the same dimensions as the rectangular. This ensures that only one rectangular pill will be slotted

at a time. As all problems with slotting the pills correctly have been rectified this design will be

used as a template; more specifically, the design of the slices in this design will be used as

templates for the individual slices that will make up the fourth and final design.

Added Cliff

34

Figure 22: Main Pill Holder Final Design (Left to Right: Isometric and Top Down)

Figure 22 shows the fourth and final design for the main pill holder. This design comes

with many changes and improvements. Firstly, there are a maximum of six slices. Two additional

slices were added as that is the average number of pills that Americans take. Additionally, this also

fulfills the project’s design scope requirement 4 which states that this design shall sort up to 6

different shapes and sizes of pills. Secondly, the slices are interchangeable as shown in Figure 23

below. This allows the user to decide what pills are being sorted, how many will be sorted, and in

what order they will be sorted. Each slice can be customized to be able to slot a specific shape and

size of pill. This also fulfills the project’s design scope requirement 5 which states that the design

shall allow for user modularity. The design for the slices were taken from the third design, using

its slices as templates. Each slice has an angle of 54 degrees. As such, the angular displacement

between the slots of the slices are also 54 degrees. This angle was chosen to allow for a whole

number of steps (120 steps) to be used for the stepper motor that actuates the holder while also

allowing for at least six slices. These slices were taken from the third design, using its slice shapes

as templates. Additionally, as shown in Figure 23 below, there is a cut that allows the drum to

interface with the slice slots. This is so that sides of the drum where the slot is absent, it acts like

35

the floor so that the pill holder and slotted pills can move over it safely. This also allows for the

slotted pills to be inserted into the drum slot correctly when it rotates to grab a pill. Figure 23 also

shows that the stepper motor that actuates the holder is attached directly to the base from below.

Figure 23: Main Pill Holder (Left to Right: Top and Bottom)

Figure 24: Half Pill Holder Design

 This design has six slices to account for the six types of pills that may be cut as shown in

Figure 24. A micro servo is attached directly to the base. The arm of the micro servo has a gate

attached to it that acts like a wall when closed so that the half pills don’t fall out when the holder

Stepper Motor

Gate

Micro Servo

Drum Interface

36

rotates. Each slice has a slight taper downward to assist the half pill in being deposited if the gate

of the micro servo is lifted open. The stepper motor that actuates the holder is attached directly to

the base from below the holder like the main pill holder.

3.6.3 Drum Design

This section will detail the development of the drum and its final design. The design process

for the drum was iterative with three different versions including the final version.

Figure 25: Drum Design One

 As shown in Figure 25, this design was experimenting with allowing two different shaped

pills: round and rectangular pills. The design also included a slit in between the slot for the pills,

making a shorter upper half and longer lower half of the drum. These two halves were coupled by

Slot

Couple

37

a 0.5in diameter couple rod in the center. This slit is to allow the blade to cut any pills slotted when

the drum rotates towards the blade. The size of the slit was derived from the previous cutter team’s

drum design and is approximately 1/8in thick. This design succeeded in slotting rectangular pills,

but it did not adequately slot round pills as they easily fell out of the drum when rotated. As such,

this design was rejected.

Figure 26: Drum Design Two

 As shown in Figure 26, the flaw in design one was fixed by adding a circular indent deeper

than the rectangular slot. This successfully allowed a circular pill to be slotted in the drum without

it falling out while rotating the drum. However, this design only allowed for two different shapes

and sizes of pills and as such, was not accepted as the final design. However, the design philosophy

of including smaller shapes deeper in the drum was followed.

38

Figure 27: Drum Final Design

 The final design for the drum is shown in Figure 27. As shown in Figure 27, the drum

design has many shaped and sized slots with the larger sizes higher up in the drum and the smaller

sizes deeper in the drum. The pills needed to be slotted in with their flat side facing up. This design

successfully allowed for a large variety of pills (up to six) to be slotted and dispensed. In order to

accommodate for the extra sizes and shapes, the diameter of the drum was increased from the

previous design by 1.5 times from 2in to 3in. Additionally, the inner coupling rod that connects

the two halves of the drum needed to be shrunk as well to a diameter of 0.25in. This did introduce

a degree of fragility to the design as this rod was sensitive to large applications of force along the

side of the upper drum half, resulting in the coupling rod breaking. As such, extra care had to be

taken when mounting the drum to the DC motor. This design helps fulfill the project’s design

39

scope requirement 4 which states that this design shall sort up to 6 different shapes and sizes of

pills.

3.6.4 Funnel Design

Figure 28: Funnel Design (Left to Right: Top Down and Side)

 Figure 28 shows the design for the funnel of the dispensing system. Firstly, the funnel

design include two different ramps. The right hand side ramp allows for whole pills that are

dispensed to be deposited in the funnel as well as one half (left half) of a cut pill to be deposited

for sorting. The left side ramp allows for the other half of the pill to be deposited in the half pill

holder for later dispensing. Additionally, there is a smaller ramp near the bottom of the funnel.

This allows for the half pills that are dispensed from the half pill holder to slide into the funnel to

be properly sorted. The dispensing hole of the funnel is half of the size of the total funnel and has

a size of 0.5x0.5in. This was done to minimize the positions that the pills fall into the compartment

of the pill holder so that they accurately fall into the compartment being sorted. There is a small

40

taper in the funnel towards the hole that prevents any pills from getting stuck so that they slide into

the hole to be sorted.

3.6.5 Cutter Design

Figure 29: Cutter System (Left to Right: Front and Side)

Figure 29 shows the implemented cutter system. As stated before, the general design of the

cutter system was unaltered including positions of the cutter and the drum. The only modification

to the system was the drum, which allowed for up to six different shapes and sizes of pills to be

dispensed or cut. Figure 26 also shows the orientation and position of the main pill holder, cut pill

holder, and funnel in relation to the cutter system. The main pill holder is situated on top of the

cutter system where the front end of it rests on the drum where it interfaces with it. The holder is

positioned 1.5 in above the center of the drum so that it is flat and level when interfacing with the

drum. The cut pill holder is situated below the cutter system so that it can receive the cut half of

the pills when the cutter system cuts a pill. There is also a cover that wraps around the cutter side

of the drum that is directly attached to the bottom base of the pill holder as seen in Figure 229.

This cover ensures that the pill remains in the drum when cut and that the two halves fall onto the

correct ramps. Lastly, the funnel is situated below the cutter system but in between the blade. This

ensures that when a pill is cut only one half of the pill will be dispensed and the other half will be

Funnel

Blade
Cutter

Motor

Drum

Drum

Motor

Motor

41

stored in the half pill holder. This design succeeded in fulfilling design scope requirement 2 where

it states that the design shall cut pills in half, store, and dispense when necessary.

3.7 Lower Level Sorting System (LLSS)

The LLSS is responsible for positioning the pill planner so that the required compartment

that is being sorted is aligned with the funnel of the ULSS. It was decided that the best

microcontroller to use for this subsystem is an Arduino Nano microcontroller. This microcontroller

actuates the motors necessary for positioning the pill planners.

Figure 30: Lower Level Sorting System Overview

 The LLSS is responsible for sorting whole or cut pills into the correct compartment (day)

of the pill planner. As shown in Figure 30, an Arduino controls the stepper motors that actuate the

sorting mechanism of the system. There are two levels, an x and z axis. The positions of the system

are pre-mapped to 14 different positions, with 7 positions on the x axis and 2 positions on the z

axis.

42

Figure 31: Lower Level Sorting System Final Design

As seen in Figure 31, the design of the lower level sorting system follows the same design

as that of a 3D printer. There is a threaded rod that is directly coupled to a stepper motor. The

allows for actuation along a straight line. However, one rail is not enough to actuate an object. As

such, a second, smooth rod is added to the side of the threaded rod. This smooth rod acts as a

guiding rod, keeping the object being actuated straight. Traditionally, 3D printers include two

smooth rods to ensure stability as well. However, due to size constraints, only one rod was used.

This does introduce a degree of instability in the system when actuated. As such, in order to

compensate, the system is actuated a slow speed to reduce shaking and vibration that accompanies

it. Additionally, the design makes use of a limit switch. This limit switch is used to calibrate the

actuator and define a zero position. When the object hits the limit switch it will send a signal to

X Axis

Limit Switch

43

the Arduino, telling it that the zero position has been found. This is done so that the actuator always

moves the object to the correct position in relation to the zero position. This system is divided into

three levels. The lowest level is the x axis with the middle level being the z axis and the top level

is where the pill planner is situated. Each level, excluding the top level, actuates a square plate.

These plates are connected to the actuators through a coupler that is coupled directly to the threaded

and smooth rods. The x axis level actuates the plate holding the z axis actuator. The z axis level

actuates the plate holding the pill planner. Together, this allows for the top plate, or pill planner,

to be moved in any direction on a 2D plane. The limits of this system are 6 inches on both levels.

That is near the total length of the pill planner, allowing for all compartments on the pill planner

to have positions pre-mapped to them. There was also an additional problem that was encountered

when designing the system. After examining a traditional 3D printer, the distance between the

threaded rod and smooth rod was found to be approximately 5 in. A slightly smaller length of 4.5

in was used. However, when the system actuates, the plate couple for the smooth rod would end

up catching and getting stuck, which would then stop the entire actuation. Upon further inspection

it was found that since the system only had one smooth rod, there was a degree of instability

introduced where the plate couple slightly rotated along the y axis of the smooth rod. This rotating

movement was enough to produce a torque at that position with the couple on the threaded rod

acting as a force on the lever arm of the total couple as shown in Figure 32 below.

44

Figure 32: Freebody diagram of rail system.

𝜏 = 𝐹 ∗ 𝐿 (3.1)

This torque was enough to completely stop the system. Several modifications were made.

Firstly, a dry lubricant was added to the couple on the smooth rod, but this was not enough to

prevent the torque from forming. Secondly, the gap in the couple for the smooth rod was shrunk

so that it was a snug fit. However, this was too much and prevented the couple from moving at all

even with a dry lubricant. Lastly, it was decided to shrink the length of the moment arm, or couple,

in order to reduce the amount of torque produced by half as can be seen in equation 3.1. The length

of the couple was reduced by half to be 2.25 in long. This succeeded in reducing the torque enough

that it did not cause the couple on the smooth rod to catch and get stuck and instead just harmlessly

slip. This does produce a slight jerk when moving but this is mitigated by slow actuation. With

F

L (Couple)
τ

45

that problem fixed, this design succeeded in fulfilling design scope requirement 1 where it states

that the design shall automatically sort pills into a standard sized 7-day, AM and PM pill planner.

3.7.1 LLSS Programming

Figure 33: Lower Level Sorting System Program Block Diagram

 Normal operation of the LLSS as shown in Figure 33 is as follows. Firstly, all variables

and constants are initialized. The stepper motors are disabled in order to prevent noise from the

Arduino startup moving them out of step. Once initial set up is finished, the stepper motors are

reenabled. Once reenabled, the x axis and z axis call the zero function where the stepper motors

rotate counter-clockwise to bring the couples of the plates toward the limit switches. This continues

46

in a while loop until the limit switches are triggered by the couples. Once the limit switches are

triggered, the zero function ends. From here, the Arduino waits for a command signal from the

master control system via TWI to move the pill planner into the next position. Once a command

signal is received, an if statement is called where it decides whether to move to the first position

of Sunday AM or to move to another position. If the first position is called, then nothing will

happen. If the first position has already been called, then another if statement will be called. This

if statement decides if the pill planner needs to move to the next day or to the next time of day. If

the next day is called, then the Arduino will call a function that actuates the x axis to move the pill

planner to the next day by rotating clockwise. If the next time of day is called, then a third and

final if statement is called. This if statement decides whether the pill planner is in the AM or PM

position. If the pill planner is in the AM position, then the Arduino calls a function that actuates

the z axis stepper to move the pill planner to the PM position by rotating clockwise and vice versa

for the AM position. These functions are only called once for a total of fourteen times and only

after the sorting for the previous position has finished with exception for the first position. The

Arduino will then send a confirmation bit to the master control system via TWI to notify it that the

pill planner is in position. For a detailed look at the programming design, please refer to the

appendix.

3.8 Power Supply

 The design requires a power supply system capable of providing power to two different

voltages: 5V and 12V. The design incorporates a commercial variable power supply that can

supply a maximum of 16V and 1.5A. This voltage supply feeds into two sperate power lines for

5V and 12V with ports to power their respective electronics. The 5V supply is used to power the

47

microcontroller and the other various control electronics. The 12V is used to power the motors in

the various systems. In order for the machine to function properly, a voltage of at least 12V needs

to be applied to the system but no more than 14V to prevent damage to the electronics and motors.

48

4. Construction

This section details the construction of the machine and its various electronics.

Figure 34: Final Design

 As seen in Figure 34, the body of the machine is made of plywood. The thickness of this

plywood is 0.5 in. These parts are secured via angle brackets with four 0.5 in wood screws each.

The other parts of the machine were secured with M3 screws and nuts. These parts were sourced

directly from Home Depot. Most custom parts were printed via a 3D printer with exception to the

motors, microcontrollers, electronics, and LLSS 3D printer parts which were all sourced directly

from Amazon. All parts are centered on the geometric center of the wooden body frame, both the

ULSS and LLSS. The total dimensions of this design are 5.5x8.5x13in. This is within the desired

49

cubic foot and as such fulfills scope requirement 6 which states that the design shall remain within

a cubic foot.

Figure 35: Power Bus (Left to Right: Top and Bottom)

 As seen in Figure 35, a protoboard was used to create the bus. As can be seen, the various

connections were soldered directly together with solder. Two female input pin connections were

used to separate the ground and power. Two male input pin connections were used to allow the

power supply to connect to the bus.

 10k Ohm Resistors

50

Figure 36: I2C/TWI Bus (Left to Right: Top and Bottom)

As seen in Figure 36, a protoboard was used to create the bus. As can be seen, the various

connections were soldered directly together with solder. Two female input pin connections were

used to separate the ground and power. Two male input pin connections were used to allow the

power supply to connect to the bus. Two 10k Ohm pullup resistors are soldered along both bus

lines directly to a 3.3V input pin. This ensures that the logic level of the TWI lines remain at 3.3V.

Figure 37: Stepper Control Board (Left to Right: Top and Bottom)

As seen in Figure 37, a protoboard was used to create the control board. As can be seen,

the various connections were soldered directly together with solder. Two male input pin

connections were used to allow the power supply to connect to the board. Two sets were used to

5V and 12V. These connections each had female input connections to connect the power to the

required positions on the board via wires. The stepper control chips were soldered directed to the

board with female input pins soldered next to their connection pins to allow for wires to be

Stepper Controller

100uF Capacitor

51

connected. Finally, a 100uF capacitor was soldered to the 12V power input pins to protect the

chip from potential power surges as directed by the reference manual.

Figure 38: Relay Control Board (Left to Right: Top and Bottom)

As seen in Figure 38, a protoboard was used to create the control board. As can be seen,

the various connections were soldered directly together with solder. The relays were soldered

directly to the board with female input pins soldered next to their connection pins to allow for

wires to be connected. Finally, there is a potential for a voltage to be generated from the coils of

the relays that is greater than the voltage input of the microcontroller. Since the relays are

controlling a DC motor, when the DC motors are turned off, they will still continue rotate a little

due to momentum. During this rotation, they act as a generator and will produce an electrical

current. This current could then induce a current in the coils of the relay, generating a voltage that

will go directly to the microcontroller pins. Schottky diodes were soldered to the coil input to act

as flyback diodes. This is to prevent potential voltage generation exceeding 3.3V from the coils

from reaching the microcontroller and damaging it.

Relay

Schottky Diode

52

5. Testing

 This section details the testing of the project design. There was a total of three tests

conducted: a shaker test, sorting test, and cutting test. The following sections will detail the

testing methodology, results, and discussion of results.

5.1 Shaker Test

 The shaker test was conducted to assess the number of steps necessary to displace the pills

in the holder and dislodge any potential blockage. However, care had to be taken to make sure that

this rapid movement did not cause the stepper to skip a step as that would potentially prevent the

drum from grabbing a pill if the slots were displaced from each other. The test was conducted as

follows. The steps were incremented by 10 starting at 10 steps up to 50 steps. At each step number,

the shaker and pills were observed to see if the pills were excited or displaced and the stepper

skipped a step or not. The results are recorded in Table 4 below.

Table 5: Shaker Test Results

Steps

Pill

Displacement

Step

Skipped

10 No No

20 No No

30 Yes Yes

40 Yes Yes

50 Yes Yes

25 Yes No

As seen in Table 5, steps below 30 do cause the stepper to skip steps, but they also do not

excite or displace the pills. Steps above 20 do excite or displace the pills but they also cause the

stepper to slip and skip steps due to the momentum of the holder. A final value in between 20 and

30 steps of 25 steps was found to excite or displace the pills but also not cause the stepper to skip

53

a step. As such, a value 25 steps was decided as the number of steps the shaker function will use

to shake the pill holder.

5.2 Sorting Test

 The sorting test was conducted to assess whether the correct number of pills would be

sorted for a full day. If the sorting system can sort the correct number of pills for the first day of

the pill planner, then it can do so for the other 13 days in the pill sorter. The test was conducted as

follows. A test number of pills for each slice for the first day was input and the pill holder slices

filled with their respective pills. Then the sorting process was started for the first day of Sunday

AM. The number of pills dispensed for each slice was then recorded. Results are recorded in Table

5 below.

Table 6: Sorting Test Results

Test

Slices Pills Needed

Slice 1 3

Slice 2 1

Slice 3 2

Slice 4 5

Slice 5 3

Slice 6 2

Results

 Slices Pills Sorted

Slice 1 3

Slice 2 1

Slice 3 3

Slice 4 4

Slice 5 3

Slice 6 2

As seen in Table 6, the sorting system successfully sorted the correct number of pills from

each slice except for slices 3 and 4. Slice 3 had an extra pill dispensed and slice 4 had one less pill

dispensed. The reason for this was found with the drum motor. Since the drum motor is a DC

54

machine, once power is stopped to the motor, it will continue to spin for a little bit due to

momentum. This drift gradually displaces the drum slot position so that it will either sort an extra

pill or skip a pill. This appeared to occur every five rotations for two rotations. After two rotations,

the drum drifts enough where normal operation can resume. This problem could potentially be

mitigated or fixed by a more sophisticated control system for the DC motor that controls its exact

position. Another solution could be to replace the DC motor with one with easier and more precise

position control such as a stepper motor.

5.3 Cutting Test

 The cutter test was conducted to assess whether the cutter correctly cut the pills in half and

with a mass loss of less than 10% as designated by the previous cutter team. This is important as

dosages of pills can be critical and any large variations can lead to dangerous and potentially even

consequences for the user. The test was conducted as follows. Each pill was cut was a set number

of times. Each pill was weighed before being cut and then each half was weighed after being cut.

Pill one was an over-the-counter acetaminophen pill and as such allowed for more intensive

testing. However, the other three pills tested came from the customer and were given in limited

numbers. As such, only two to three tests were conducted for these pills. Results were recorded in

Figure 36 and Table 6 below. The following equations were used to assess the mass loss of the

pills and mass of each cut half of the pill in relation to the total mass.

% Mass Loss =
𝑀𝐻𝑎𝑙𝑓1+𝑀𝐻𝑎𝑙𝑓2

𝑀𝑇𝑜𝑡𝑎𝑙
∗ 100 (5.1[5])

% Mass of Total Mass =
𝑀𝐻𝑎𝑙𝑓

𝑀𝑇𝑜𝑡𝑎𝑙
∗ 100 (5.2[5])

55

Figure 39: Cut Pills Result (Qualitative)(Right to Left: Pill 1, 2, 3, and 4)

 As can be seen in Figure 39, the pills do not have a consistent cut pattern. The pills from

pill 1 show that the pills slightly fracture at the cut line. Additionally, it can be seen that one half

is larger than the other half for many of the pills. The same can be said for pills 2 and 3 as well.

However, pill 4 shows that the pill completely fractures into two uneven pieces. This suggests that

the cutter cuts rectangular pills more easily than round pills.

Table 6: Cut Pills Results (Quantitative) (Cont. on pg53)

Total

Dosage

(mg)

Half 1

Dosage

(mg)

% of Total

Dosage

Half 2

Dosage

(mg)

% of

Total

Dosage

New

Total

(mg)

Mass

Loss

(%)

Pill 1

Test 1 550 250 45.455 290 52.727 540 1.818

Pill 1

Test 2 510 260 50.980 240 47.059 500 1.961

Pill 1

Test 3 490 200 40.816 280 57.143 480 2.041

Pill 1

Test 4 510 220 43.137 260 50.980 480 5.882

Pill 1

Test 5 530 240 45.283 280 52.830 520 1.887

Pill 1

Test 6 550 250 45.455 280 50.909 530 3.636

1 2 3 4

56

Pill 1

Test 7 490 220 44.898 260 53.061 480 2.041

Total

Dosage

(mg)

Half 1

Dosage

(mg)

% of Total

Dosage

Half 2

Dosage

(mg)

% of

Total

Dosage

New

Total

(mg)

Mass

Loss

(%)

Pill 2

Test 1 910 430 47.253 450 49.451 880 3.297

Pill 2

Test 2 910 420 46.154 450 49.451 870 4.396

Pill 3

Test 1 670 350 52.239 290 43.284 640 4.478

Pill 3

Test 2 660 270 40.909 310 46.970 580 12.121

Pill 3

Test 3 660 260 39.394 290 43.939 550 16.667

Pill 4

Test 1 580 410 70.690 20 3.448 430 25.862

Pill 4

Test 2 600 250 41.667 250 41.667 500 16.667

 As can be seen in Table 7, mass loss for all tests excluding the last 3 are within the 10%

mass loss requirement with some as low as 2%. The mass loss for the last three tests are over 10%

mass lass with one as high as 25%. These results match up with the results from the qualitative

results for the round pills where the round pills do not get cut but completely fracture. As such, a

large amount of mass loss is expected. As for the size of the halves, each half is no more than 55%

of the total mass and no less than 40% of the total mass. As such, each half holds roughly 50% of

the total mass with a variation of about 15% less than the total mass. However, such a large

variation it is not ideal. The ideal variation would be less than 5% of the total mass for each half,

accounting for the total maximum mass loss of 10%.

 One potential cause for the errors is that in initial testing of the cutter system, the original

blade used by the previous cutter team failed and was lost. Due to time constraints, a full

replacement could not be retrieved. As such, a close alternative was used of similar diameter but

with a rougher blade. Using this rougher blade could be the reason the pills fracture when cut.

57

Another potential cause for the errors is that the pills are not correctly slotted in the drum slot.

Since the drum is designed to slot pills with their flat sides facing up, there is a large surface area

where the pills could be slotted incorrectly. If the pills are slotted at odd angles, then the pills will

not be cut down the middle as anticipated, resulting in uneven halves. Additionally, trying to cut

the pills at odd angles could also result in the pill not cutting properly and as a result fracture.

58

6. Budget

This section will discuss the total cost of the design in an itemized list.

Table 8: Bill of Materials

Part Price Per Unit ($) Units Cost ($)

nRF51 Microcontroller 50.00 1 50.00

Arduino Nano 10.00 2 20.00

Spektrum RC Avian 30 Amp Smart ESC 16.50 1 16.50

Gyros 81-11515 Blade 13.99 1 13.99

Brushed 30RPM DC Motor 12.99 1 12.99

Brushless 3 Phase Motor uxcell 36.99 1 36.99

8 mm Threaded Rod (200 mm) 11.00 2 22.00

Rod Rail Shaft Support 2.25 4 9.00

150 mm Linear Shaft 2.00 5 10.00

16 Key Matrix keypad 8 pin 8.99 1 8.99

20x4 LCD Module with I2C Adapter 10.99 1 10.99

Lever Arm Micro Limit Switch 0.50 2 1.00

NEMA 17 Stepper Motor 39mm Body 9.33 3 27.99

NEMA 17 Stepper Motor 23mm Body 8.99 1 8.99

NEMA 17 Stepper Motor Mounts 2.50 2 5.00

HiLetgo A4988 Stepper Motor Driver 1.89 2 3.78

2mm to 3mm Motor Shaft Coupler 6.99 1 6.99

24V Variable Power Supply 21.59 1 21.59

ELEGOO 120pcs Ribbon Wire 7.47 2 14.94

100uF Radial Electrolytic Capacitor 6.20 1 6.20

15SQ045 15A Schottky Diode 6.41 1 6.41

10 Pairs 12V DC Power Connector Jack 7.91 1 7.91

4pcs XT60 Male Female Connector 8.99 1 8.99

Nowepai 5Pcs PCB Power DPDT 5V

Coil Micro Relay
7.99 1 7.99

AUSTOR 100Pcs PCB Board Kit 16.04 1 16.04

0.5in Wood Screws 30 1 50

M3 Machine Screws and Nuts 25 1 25

0.5x8x8in Plywood 33.50 1 33.50

Total cost 452.77

 As shown in Table 8, the total cost of the project amounted to around $452.77 USD. The

costliest parts for the project were the motors, construction materials, and microcontrollers. When

compared against the cost of automated sorters on the market, it has a competitive cost since the

59

costs for current products range from $300 USD to $1200 USD[3]. Costs could have been driven

down if some parts were sourced directly rather than through Amazon as most of these parts were.

7. Requirement Specifications

In this section the requirement specifications as required by the project guidelines that have not

already been discussed within the report will be discussed.

7.1 Environmental

Environmental factors are also important when designing a product.

An efficient design uses less energy. Thus, in the future, the machine should be designed with a

low power setting when not in use. Therefore, the power usage of the machine will be minimized,

minimizing the carbon footprint.

7.2 Public Health, Safety, and Welfare

Designing a product with the public's health and safety in mind is essential. If a product

does not function in the way it was intended, users may be harmed. This machine was designed to

prevent potential medical emergencies associated with prescription drug use, such as overdosing

or underdosing. Sorting and counting must be performed with minimal error by the system (within

5%). In addition, the machine must follow the FDA's Code of Federal Regulations Title 21[5]

regarding dispensers.

7.3 Global/Political

Currently, the machine will only be marketed to the USA, so global or political concerns

outside of the USA are not being considered. As such, only American defined standards and

60

regulations will be followed, such as the FDA regulations on a pill cutter only having 10% mass

loss for each cut.

7.4 Ethical and Professional

This is a machine that is supposed to help people save time. There are not any ethical

problems when making this machine. There is nothing skipped in the production of this device or

in the coding. Nothing involving safety has popped up that was skipped over, and everything was

taken seriously. When it came to professional standards, it was not up to those. This machine was

made as the best that it can be for college students and not being made at a professional company.

This is not something that is mass produced or have a final product made from steel and plastic.

While the production is not that professional the design process was above average. But since this

was done by two college students that do not have professional experience it’s hard to compare to

professional standards.

8. Lessons Learned

 Many lessons were learned over the course of the project. Firstly, time management was

an important lesson. Throughout the semester, meeting deadlines has been a challenge for the team.

There have been several times where deadlines have not been met and the resulting work to catch

up only piled up. This ultimately increased our workload in the long run and potentially affected

the quality of our work. Additionally, there were additional functions and features that we wished

to implement but we had to scrap because of time constraints.

 Secondly, it is important make sure high RPM motors such as the cutter motor are attached

and coupled tightly to the base. There was one incident where the mounts on the cutter motor were

not tightened enough, so the torque produced by the blade pushed the motor and blade backward

61

and out of the brackets. This resulted in a critical failure of the cutter system where the axle of the

motor became bent as the blade tried to cut through the drum. Additionally, since the design is

under a lot of vibration, especially during cutting, screws can very easily come loose. As such, we

learned that it was imperative to check to make sure all screws and mounts are tightened down

properly after running cutter. There was an incident where the screw that secured the blade to the

cutter motor came loose. So, as the cutter motor got up to speed, it fell off the mount and became

a projectile.

 Thirdly, we learned important safety lessons. When there was a critical failure of the blade

where it became a projectile, it was spinning at near 20,000 RPM when it launched. That presented

an incredible danger. While we took appropriate precautions such as safety glasses and making

sure we weren’t in the direction of the blade, others may not be so fortunate. As such, in response,

a wall was added in front of the blade so that if it did come off its mounting again, it would fly

into the wall and stop there rather than become a projectile. This also later prevented the cutter

motor and blade from flying out of the body when another critical failure occurred.

 Fourthly, we learned about the conservation of power for our subsystems. Even though we

had a power supply that connected directly to an outlet that supplied the required 1.5A of current

needed for most of our motors, they all did not share the current equally. We especially learned

that when implementing the cutter system. When we initially implemented the cutter system, all

the motors remained powered including the stepper motors. However, the stepper motors take a

lot current to maintain their position. As such, when the drum motor needed to rotate it could not

rotate at all. As such, we implemented a function that would turn off the stepper motors when

operating the drum motor and then turn them back on again after.

62

 Lastly, we learned a lot about interactions between electrical and mechanical systems.

When programming a motor for example, it is important to anticipate or predict the physical

behavior of the item being actuated such as the pill holder and when problems are encountered,

electrical and physical solution must be explored. One problem we encountered was that the

stepper motor wouldn’t have enough torque to overcome the friction between the pill slices and

the holder. This resulted in attempts to compensate in the programming. This just led to needless

code and bloat in the programming. What we eventually did was look at the physical design of the

pill holder and slices and made the radius slightly larger for the pill holder. This left wiggle room

for the slices and negated any of the previous friction. Additionally, we learned about

communication between microcontrollers and efficient methods of applying the communication

protocol to transfer the data needed. Since I2C was our chosen communication protocol, it was

able to transmit up to 8 bits at a time. From this information we developed a data line protocol that

included all the necessary information that needed to be transmitted within 8 bits.

9. Future Considerations

With every project there is always something to improve on and that is no different with

this project. One of the more important improves that needs to be made to this machine is to

implement a safety measure to prevent overdosing. A safety measurement put in place is a big

thing when it comes to medicine being sorted automatically by a machine. Some people need to

take specific amounts of their medicine/pills and if they don’t take that exact amount there could

be some harmful side effects or even deadly. A suggestion for such a system could be to add a

digital scale that will weigh the total mass of all the pills sorted to ensure all pills have been sorted

correctly.

63

Another improvement that needs to be implemented is a cleaning system for the cutter.

After cutting tablet pills there can be a large amount of dust that piles up over time, so a vacuum

could be a good answer to this issue.

The user modularity could also be improved such as the moving just past tablet pills being

sorted in this system and being able to sort pills at a specific time of day. This machine is limited

to just tablet pills because of the cutting option. This could easily be upgraded to include gel and

capsule type pills that can be sorted but not cut. The add in the function of sorting a pill at a specific

time of the day for those who need that option. This could be easily implemented using the current

code base.

The next improvement is to add a more user-friendly interface for those to use. An LCD

screen and a 4x4 punch pad is not the easiest to use. A touch screen can be a lot easier for some

people since that happens to be the norm today and it might be easier or those with some motor

skill problems to use a touch screen that is easier to use but also see.

Compared to other pill sorters on the market that has E-Health integration, this sorter just

doesn’t compare. So, adding that function that allows doctors/nurses to know if their patient has

taken their medicines can put this machine in a league of its own because of its cutting capabilities.

Additionally, improvements on the drum design can be made to ensure that the pills are

slotted correctly. A potential suggestion could be that the drum could be designed to slot pills

vertically or on their thin sides rather than their long flat sides.

Lastly, a controller to control the precise position of the DC motor for the drum should be

implemented to ensure the drum doesn’t under or overdose pills. A potential solution could be the

implementation of a voltage control system to control the speed with the addition of a

potentiometer or encoder coupled to the shaft of the DC motor to measure position.

64

10. Teamwork

When it comes to a group project, it is always important for the team to work and

communicate efficiently with each other. The team was organized by setting up a shared One-

Drive file with all the work that has been done on the project. This eliminates having to email

everyone in the group the work that has been done. This eliminates someone forgetting to add

something to the email that needs to be sent. This also helped with communication, since it didn’t

force the team to use email for communication. The team relied on text when someone needed to

talk to someone else. Text made it easy and efficient to communicate all information that is needed

to be communicated. We were able to figure out each other's strengths quickly, so we were able

to pick someone for the job who would be the best fit, as well as someone who would volunteer.

We have not faced any disagreements or problems yet, but if we do, we will let both sides speak

about the issue and find a solution that is logical and fair.

The main problem of teamwork that we had was the transition from ECE 471 to ENGR

491, which is preliminary class of senior design to the actual senior design class. The first class

was in the Spring of 2021 and the second is in the Fall of 2021 and this transition was difficult for

this team, because during the summer we had jobs and some of us had summer classes, so we

couldn’t keep in touch very much or work on the project as much as we would have liked.

Additionally, In the Fall 2021 semester started back up, we learned that one of our teammates

would not be attending USI that fall and therefore would not be on our team anymore. We had

to overcome this and get back to work.

During the semester, the project sections were divided up between the two team members.

The ULSS and master control system, and their respective designs were handled by one team

member while the LLSS and its design was handled by another team member. We both cooperated

65

in incorporating and implementing our respective designs. Additionally, we both worked on the

senior design report and design presentation together in our own times when we could, adding to

it throughout the semester.

11. Conclusion

In conclusion, a design and prototype were made where up to six different shapes and sizes

of pills are sorted automatically in a standard sized 7-day, AM and PM pill planner. This design

also cuts pills in half, store, and dispense when necessary. Additionally, it incorporates user

modularity so that the user may decide what pills are sorted, how many are sorted, and in what

order they are sorted. However, the design is not perfect. The drum over or underdoses pills every

five rotations. The drum design also does not guarantee the pills are slotted correctly, specifically

round pills. This leads to pills being cut improperly resulting in fracturing. This also leads to

uneven halves when pills are cut with variations of 40% up to 55% of the total mass. However, the

cutter does cut pills with less than 10% mass loss, with mass loss as small as 2%. The exception

to this is round pills with mass loses up to 25%. These flaws are rectifiable with potential

improvements on the design such as using a finer tipped blade for the cutter, a drum design where

the pills are slotted in sideways and implementing a control system to control the precise position

of the DC motor.

66

References

[1] Barret. LL. Prescription Drug Use Among Midlife and Older Americans.

https://assets.aarp.org/rgcenter/health/rx_midlife_plus.pdf (2005)

[2] CDC. Therapeutic Drug Use. https://www.cdc.gov/nchs/fastats/drug-use therapeutic.htm
(2019)

[3]Clark A. Dispenser for Seniors. TheSeniorList.

https://www.theseniorlist.com/medication/dispensers/ (2021)

[4] Electromate. NEMA 17 Motors. NEMA. https://www.electromate.com/products/stepper-

motors/nema-stepper-motors/nema-17-stepper-motors/ (2021)

[5] FDA. Code of Federal Regulation Title 21. U.S. Department of Health.

https://www.ecfr.gov/cgi-

bin/textidx?SID=3764c91cae704aa7c1ae684401ec7141&mc=true&tpl=/ecfrbrowse/Title21/21ta

b_02.tpl (2021)

[6] Georgetown University Prescription Drugs. Georgetown University.

https://hpi.georgetown.edu/rxdrugs/ (2002)

[7] Hess, J. Jeffries, J. Marchand, E. Murdock, D. Final Report Pill Cutter. University of

Southern Indiana. (2020)

[8] Nordic Semiconductor. nRF51 Series Reference Manual. Nordic Semiconductor.

https://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf (2014)

https://assets.aarp.org/rgcenter/health/rx_midlife_plus.pdf
https://www.cdc.gov/nchs/fastats/drug-use-therapeutic.htm
https://www.theseniorlist.com/medication/dispensers/
https://www.electromate.com/products/stepper-motors/nema-stepper-motors/nema-17-stepper-motors/
https://www.electromate.com/products/stepper-motors/nema-stepper-motors/nema-17-stepper-motors/
https://www.ecfr.gov/cgi-bin/textidx?SID=3764c91cae704aa7c1ae684401ec7141&mc=true&tpl=/ecfrbrowse/Title21/21tab_02.tpl
https://www.ecfr.gov/cgi-bin/textidx?SID=3764c91cae704aa7c1ae684401ec7141&mc=true&tpl=/ecfrbrowse/Title21/21tab_02.tpl
https://www.ecfr.gov/cgi-bin/textidx?SID=3764c91cae704aa7c1ae684401ec7141&mc=true&tpl=/ecfrbrowse/Title21/21tab_02.tpl
https://hpi.georgetown.edu/rxdrugs/
https://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf

67

Appendix

Appendix A: Failure Modes and Effect Analysis

Table A.1 Failure Modes and Effects Analysis

68

Appendix B: ABET Outcome 2, Design Factor Considerations

ABET Outcome 2 states "An ability to apply engineering design to produce solutions that meet

specified needs with consideration of public health safety, and welfare, as well as global, cultural,

social, environmental, and economic factors."

ABET also requires that design projects reference appropriate professional standards, such as

IEEE, ATSM, etc.

For each of the factors in Table N.1, indicate the page number(s) of your report where the item is

addressed, or provide a statement regarding why the factor is not applicable for this project.

Table B.1: Design Factors Considered

Design Factor Page number, or reason not applicable

Public health safety, and welfare 3,59

Global/Political 3,60

Cultural 1,2

Social 1,2

Environmental 59

Economic 58,59

Professional Standards 60

69

Appendix C: Master Control System Code

Appendix C.1: Master Control Code

/**

 * Copyright (c) 2016 - 2017, Nordic Semiconductor ASA

 *

 * All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without modification,

 * are permitted provided that the following conditions are met:

 *

 * 1. Redistributions of source code must retain the above copyright notice, this

 * list of conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form, except as embedded into a Nordic

 * Semiconductor ASA integrated circuit in a product or a software update for

 * such product, must reproduce the above copyright notice, this list of

 * conditions and the following disclaimer in the documentation and/or other

 * materials provided with the distribution.

 *

 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its

 * contributors may be used to endorse or promote products derived from this

 * software without specific prior written permission.

 *

 * 4. This software, with or without modification, must only be used with a

 * Nordic Semiconductor ASA integrated circuit.

 *

 * 5. Any software provided in binary form under this license must not be reverse

 * engineered, decompiled, modified and/or disassembled.

 *

 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND

ANY EXPRESS

 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES

 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR

PURPOSE ARE

 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR

CONTRIBUTORS BE

 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE

 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT

70

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT

 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

 *

 */

#include <stdio.h>

#include <math.h>

#include "boards.h"

#include "app_util_platform.h"

#include "app_error.h"

#include "nrf_drv_twi.h"

#include "nrf_delay.h"

#define NRF_LOG_MODULE_NAME "APP"

#include "nrf_log.h"

#include "nrf_log_ctrl.h"

#include "UI/UI.h"

// Pill Data //

/*int pill_Dosage[6] = {1, 1, 1, 1, 1, 1};

int pill_DosageDay[6][14] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};*/

// Test Pill Data //

int pill_Dosage[6] = {100, 100, 100, 100, 100, 100};

int pill_DosageDay[6][14] = {{50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50},

 {50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

uint8_t dayFilled = 0; // Filled compartments in pill planner.

/* TWI instance ID. */

#define TWI_INSTANCE_ID 1

71

/* TWI instance. */

static const nrf_drv_twi_t DATA_twi = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID);

// Data

uint8_t data = 0x0;

uint8_t address = 0x0;

ret_code_t err_code;

/**

 * @brief TWI initialization.

 */

void DATA_twi_init(void)

{

 ret_code_t err_code;

 const nrf_drv_twi_config_t DATA_twi_config = {

 .scl = ARDUINO_SCL_PIN,

 .sda = ARDUINO_SDA_PIN,

 .frequency = NRF_TWI_FREQ_100K,

 .interrupt_priority = APP_IRQ_PRIORITY_HIGH,

 .clear_bus_init = false

 };

 err_code = nrf_drv_twi_init(&DATA_twi, &DATA_twi_config, NULL, NULL);

 APP_ERROR_CHECK(err_code);

 //nrf_drv_twi_enable(&DATA_twi);

}

/**

 * @brief Function for main application entry.

 */

// Setting up functions

void mainMenu(void);

void ULSS(void);

void LLSS(void);

int main(void)

{

 // Intializes interfaces and TWI connections

 LCD_init();

 DATA_twi_init();

72

 while(1==1) // Runs the user interface

 {

 mainMenu();

 }

}

void mainMenu(void) // Responsible for the main menu of the user interface

{

 DATA_twiEnable(0); // Disable DATA_twi

 UI_twiEnable(0);// Enable UI_twi

 UI_MainMenu(); // Tells LCD to display main menu options

 int option = 0;

 option = UI_mainMenuSelect(Keypad()); // Determines which option the user picks; 1 is start

sorting and 0 is input pill data

 if(option == 1) // Start sorting

 {

 UI_twiEnable(1); // Disable UI_twi

 DATA_twiEnable(1); // Enable DATA_twi

 while(dayFilled <= 13) // sort pills for all 14 compartments of pill planner

 {

 LLSS(); // Tell LLSS to move to the next position

 nrf_delay_ms(500);

 ULSS(); // Tell ULSS to dispense pills for that position

 }

 dayFilled = 0; // Resets sorting

 DATA_twiEnable(0); // Disable DATA_twi

 UI_twiEnable(0);// Enable UI_twi

 }else if(option == 0) // Starts data input for pill data

 {

 int stop = 0;

 int pos = 0;

 int dosage[4] = {0, 0, 0, 0};

 for(int slice = 0; slice < 5; slice++) // Loops for all 6 slices or pills

 {

 UI_inputMenuPill(slice); // Asks user to input dosage for the respective slice

73

 stop = 0;

 pos = 0;

 for(int i = 0; i <= 3; i++) // Resets dosage handler for handling dosage number of pills

 {

 dosage[i] = 0;

 }

 while(stop != 2) // Continues through all slices and dosages for specific times of day until the

last slice is done

 {

 dosage[pos] = Keypad(); // Records what number the user inputs

 stop = UI_inputMenuPillInput(dosage[pos], pos); // Determines whether to stop sorting or

continue

 if(stop == 2)

 {

 pos = pos - 1;

 }

 else if(stop == 1) // Resets dosage input from pressing delete key on keypad

 {

 pos = 0;

 for(int i = 0; i <= 3; i++)

 {

 dosage[i] = 0;

 }

 }else if(stop == 0 && stop != 2) // Moves cursor for the LCD to the next position as well as

records the numerical position of the number input

 {

 pos = pos + 1;

 }

 }

 for(int i = 0; i <= pos; i++) // Converts input set of numbers into an actual value for the

dosage

 {

 pill_Dosage[slice] = dosage[i]*(powf(10, (pos - i))) + pill_Dosage[slice];

 }

 for(int day = 0; day <= 13; day++) // Loops for all 14 compartments of pill planner

 {

 UI_inputMenuDays(day);

 stop = 0;

 pos = 0;

 for(int i = 0; i <= 3; i++)

 {

 dosage[i] = 0;

74

 }

 while(stop != 2)

 {

 dosage[pos] = Keypad();

 stop = UI_inputMenuPillInput(dosage[pos], pos);

 if(stop == 2)

 {

 pos = pos - 1;

 }

 else if(stop == 1)

 {

 pos = 0;

 for(int i = 0; i <= 3; i++)

 {

 dosage[i] = 0;

 }

 }else if(stop == 0 && stop != 2)

 {

 pos = pos + 1;

 }

 }

 for(int i = 0; i <= pos; i++)

 {

 pill_DosageDay[slice][day] = dosage[i]*(powf(10, (pos - i))) +

pill_DosageDay[slice][day];

 }

 }

 }

 }

}

void ULSS(void) // Handles sending pill data to ULSS via TWI

{

 uint8_t slicePos = 0x0;

 uint8_t pillNum = 0x0;

 uint8_t cut = 0x0;

 address = 0x1; // ULSS TWI address

 for(int i = 0; i <= 5; i++) // Sends pill data from all six slices

 {

 float pillNumTemp = 0.5;

 slicePos = i;

75

 pillNumTemp = ((float)pill_DosageDay[slicePos][dayFilled])/((float)pill_Dosage[slicePos]);

 if(pillNumTemp == floorf(pillNumTemp)) // Determines if a half dose is needed; if even, then

no cut

 {

 cut = 0x0;

 pillNum = (uint8_t)pillNumTemp;

 }else // if odd, then cut

 {

 cut = 0x1;

 pillNum = (uint8_t)floorf(pillNumTemp);

 }

 data &= ~((0x1 << 7) | (0xF << 3) | (0x7 << 0));

 data |= ((cut << 7) | (pillNum << 3) | (slicePos << 0)); // Data line that holds pill data for ULSS

 nrf_drv_twi_tx(&DATA_twi, address, &data, sizeof(data), false); // Sends data to ULSS

 }

 data &= ~((0x1 << 7) | (0xF << 3) | (0x7 << 0));

 data |= (0x0 << 0); // Resets data register

 nrf_drv_twi_rx(&DATA_twi, address, &data, sizeof(data));

 while(data != 0x1) // Waits for confirmation bit from ULSS

 {

 // wait for ULSS confirmation //

 nrf_drv_twi_rx(&DATA_twi, address, &data, sizeof(data));

 }

 dayFilled = dayFilled + 1;

}

void LLSS(void) // Handles sending movement data to LLSS via TWI

{

 address = 0x2; // TWI address of LLSS

 data &= ~((0x1 << 8) | (0xF << 4) | (0x7 << 0));

 data |= (0x1 << 0); // Data bit to move LLSS

 nrf_drv_twi_tx(&DATA_twi, address, &data, sizeof(data), false);

 data &= ~((0x1 << 8) | (0xF << 4) | (0x7 << 0));

 data |= (0x0 << 0);

 nrf_drv_twi_rx(&DATA_twi, address, &data, sizeof(data));

 while(data != 0x1) // Waits for confirmation but from LLSS

76

 {

 // wait for LLSS confirmation //

 nrf_drv_twi_rx(&DATA_twi, address, &data, sizeof(data));

 }

}

void DATA_twiEnable(int option) // Enables and disables DATA twi line

{

 if(option == 1) // Enable

 {

 nrf_drv_twi_enable(&DATA_twi);

 }else if(option == 0) // Disable

 {

 nrf_drv_twi_disable(&DATA_twi);

 }

}

/** @} */

77

Appendix C.2: Keypad Code

#include "nrf.h"

#include "nrf51.h"

#include "nrf_delay.h"

#include "./NRF_BS/NRF_BS.h"

void inputChecker_set(char rc) // Detects which button was pressed on keypad for the numpad

{

 uint32_t rows[4] = {0x10, 0x11, 0x12, 0x13}; // Mapped positions of keypad pins (rows)

 uint32_t columns[4] = {0xC, 0xD, 0xE, 0xF}; // Mapped position of keypad pins (columns)

 int rows_num[4] = {16, 17, 18, 19};

 int columns_num[4] = {12, 13, 14, 15};

 if(rc == 'r') // Checks which rows have been pressed

 {

 for(int j = 0; j <= 3; j++)

 {

 GPIO_WRITE_BS(rows_num[j], 0); // turn off output

 GPIO_CONFIG_BS(rows_num[j], 0, 0, 1, 0, 0); // input

 GPIO_CONFIG_BS(columns_num[j], 1, 1, 0, 0, 0); // output

 GPIO_WRITE_BS(columns_num[j], 1); // turn on output

 }

 for(int i = 0; i <= 3; i++)

 {

 NRF_GPIOTE->CONFIG[i] &= ~((0x3 << 0) | (0x1F << 8) | (0x3 << 16) | (0x1 << 20)); //

reset peripheral

 }

 for(int i = 0; i <= 3; i++)

 {

 NRF_GPIOTE->CONFIG[i] |= ((0x1 << 0) | (rows[i] << 8) | (0x2 << 16) | (0x0 << 20)); //

sets rows for detecting an input

 }

 }else if(rc == 'c') // Checks which columns have been pressed

 {

 for(int j = 0; j <= 3; j++)

 {

 GPIO_WRITE_BS(columns_num[j], 0); // turn off output

 GPIO_CONFIG_BS(columns_num[j], 0, 0, 1, 0, 0); // input

 GPIO_CONFIG_BS(rows_num[j], 1, 1, 0, 0, 0); // output

 GPIO_WRITE_BS(rows_num[j], 1); // turn on output

 }

 for(int i = 0; i <= 3; i++)

78

 {

 NRF_GPIOTE->CONFIG[i] &= ~((0x3 << 0) | (0x1F << 8) | (0x3 << 16) | (0x1 << 20)); //

reset peripheral

 }

 for(int i = 0; i <= 3; i++)

 {s

 NRF_GPIOTE->CONFIG[i] |= ((0x1 << 0) | (columns[i] << 8) | (0x1 << 16) | (0x0 << 20));

// sets columns for detecting an input

 }

 }

}

int Keypad_check() // Detects what button is pressed and records the value

{

 int trigger = 0;

 int ans = 0;

 while(trigger != 1)

 {

 for(int i = 0; i <= 3; i++)

 {

 if(NRF_GPIOTE->EVENTS_IN[i] == 1)

 {

 trigger = 1;

 NRF_GPIOTE->EVENTS_IN[i] = 0;

 ans = i;

 nrf_delay_ms(10);

 break;

 }

 }

 }

 for(int i = 0; i <= 3; i++)

 {

 NRF_GPIOTE->EVENTS_IN[i] = 0;

 }

 return ans;

}

int Keypad() // Controls the whole keypad mechanism and returns what key/button was pressed

on the keypad

{

 int r = 0;

 int c = 0;

 int keys[4][4] = {{41, 100, 0, 101}, {31, 9, 8, 7}, {21, 6, 5, 4}, {11, 3, 2, 1}}; // 11 to 41 is F1

to F4, and 101 and 100 are enter and stop, respectively

79

 inputChecker_set('c'); // set columns to receive inputs and generate event

 c = Keypad_check();

 inputChecker_set('r'); // set rows to receive inputs and generate event

 r = Keypad_check();

 return keys[r][c];

}

80

Appendix C.3: LCD Code

#include <stdio.h>

#include "nrf.h"

#include "nrf51.h"

#include "boards.h"

#include "app_util_platform.h"

#include "app_error.h"

#include "nrf_drv_twi.h"

#include "nrf_delay.h"

// LCD DEFINES //

// commands

#define LCD_CLEARDISPLAY 0x01

#define LCD_RETURNHOME 0x02

#define LCD_ENTRYMODESET 0x04

#define LCD_DISPLAYCONTROL 0x08

#define LCD_CURSORSHIFT 0x10

#define LCD_FUNCTIONSET 0x20

#define LCD_SETCGRAMADDR 0x40

#define LCD_SETDDRAMADDR 0x80

// flags for display entry mode

#define LCD_ENTRYRIGHT 0x00

#define LCD_ENTRYLEFT 0x02

#define LCD_ENTRYSHIFTINCREMENT 0x01

#define LCD_ENTRYSHIFTDECREMENT 0x00

// flags for display on/off control

#define LCD_DISPLAYON 0x04

#define LCD_DISPLAYOFF 0x00

#define LCD_CURSORON 0x02

#define LCD_CURSOROFF 0x00

#define LCD_BLINKON 0x01

#define LCD_BLINKOFF 0x00

// flags for display/cursor shift

#define LCD_DISPLAYMOVE 0x08

#define LCD_CURSORMOVE 0x00

#define LCD_MOVERIGHT 0x04

#define LCD_MOVELEFT 0x00

// flags for function set

#define LCD_8BITMODE 0x10

#define LCD_4BITMODE 0x00

#define LCD_2LINE 0x08

81

#define LCD_1LINE 0x00

#define LCD_5x10DOTS 0x04

#define LCD_5x8DOTS 0x00

// flags for backlight control

#define LCD_BACKLIGHT 0x08

#define LCD_NOBACKLIGHT 0x00

#define En 0x4 // Enable bit

#define Rw 0x2 // Read/Write bit

#define Rs 0x1 // Register select bit

// variables

uint8_t LCD_Address = 0x27;

uint8_t _backlightval = LCD_BACKLIGHT;

uint8_t _displayfunction = LCD_4BITMODE | LCD_2LINE | LCD_5x8DOTS;

uint8_t _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;

uint8_t _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;

int keyNums[10] = {0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39};

// TWI DEFINES //

/* TWI instance ID. */

#define TWI_INSTANCE_ID 0

/* TWI instance. */

static const nrf_drv_twi_t UI_twi = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID);

// LCD IRQ COMMAND //

void UI_twi_init(void)

{

 ret_code_t err_code;

 const nrf_drv_twi_config_t UI_twi_config = {

 .scl = ARDUINO_SCL_PIN,

 .sda = ARDUINO_SDA_PIN,

 .frequency = NRF_TWI_FREQ_100K,

 .interrupt_priority = APP_IRQ_PRIORITY_HIGH,

 .clear_bus_init = false

 };

 err_code = nrf_drv_twi_init(&UI_twi, &UI_twi_config, NULL, NULL);

 APP_ERROR_CHECK(err_code);

82

 nrf_drv_twi_enable(&UI_twi);

}

// LCD COMMANDS //

void LCD_transmit(uint8_t input) // Transmits bits over TWI

{

 uint8_t data = (input | _backlightval);

 nrf_drv_twi_tx(&UI_twi, LCD_Address, &data, sizeof(data), false);

}

void LCD_pulseEnable(uint8_t pulse) //1 is enable and 0 is disable

{

 LCD_transmit(pulse | En);

 nrf_delay_us(1);

 LCD_transmit(pulse & ~En);

 nrf_delay_us(50);

}

void LCD_write4bits(uint8_t value) // Sends data over 4 bits

{

 LCD_transmit(value);

 LCD_pulseEnable(value);

}

void LCD_send(uint8_t value, uint8_t mode)

{

 uint8_t highnib = value & 0xf0;

 uint8_t lownib = (value << 4) & 0xf0;

 LCD_write4bits((highnib) | mode);

 LCD_write4bits((lownib) | mode);

}

void LCD_command(uint8_t command)

{

 LCD_send(command, 0);

}

void LCD_write(uint8_t chara)

{

 LCD_send(chara, 1);

}

void LCD_display()

83

{

 _displaycontrol |= LCD_DISPLAYON;

 LCD_command(LCD_DISPLAYCONTROL | _displaycontrol);

}

void LCD_clear()

{

 LCD_command(LCD_CLEARDISPLAY);

 nrf_delay_us(2000);

}

void LCD_home()

{

 LCD_command(LCD_RETURNHOME);

 nrf_delay_us(2000);

}

void backlight()

{

 _backlightval = LCD_BACKLIGHT;

 LCD_transmit(0);

}

void LCD_setCursor(uint8_t col, uint8_t row)

{

 int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };

 if (row > 4)

 {

 row = 4 - 1;

 }

 LCD_command(LCD_SETDDRAMADDR | (col + row_offsets[row]));

}

void LCD_init() // Initializes LCD

{

 UI_twi_init();

 nrf_delay_ms(50);

 LCD_transmit(0x8);

 nrf_delay_ms(1000);

 LCD_write4bits(0x03 << 4);

 nrf_delay_ms(5);

 LCD_write4bits(0x03 << 4);

84

 nrf_delay_ms(5);

 LCD_write4bits(0x03 << 4);

 nrf_delay_us(150);

 LCD_write4bits(0x02 << 4);

 LCD_command(LCD_FUNCTIONSET | _displayfunction);

 LCD_display();

 LCD_clear();

 LCD_command(LCD_ENTRYMODESET | _displaymode);

 LCD_home();

 nrf_drv_twi_disable(&UI_twi);

}

void UI_MainMenu() // Initializes the main menu UI

{

 nrf_drv_twi_enable(&UI_twi);

 LCD_setCursor(0, 0);

 // F1)

 LCD_write(0x46); // F

 LCD_write(0x31); // 1

 LCD_write(0x29); //)

 LCD_write(0x20); // space

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Pill

 LCD_write(0x50); // P

 LCD_write(0x69); // i

 LCD_write(0x6C); // l

 LCD_write(0x6C); // l

 LCD_write(0x20); // space

85

 // Data

 LCD_write(0x44); // D

 LCD_write(0x61); // a

 LCD_write(0x74); // t

 LCD_write(0x61); // a

 LCD_write(0x20); // space

 LCD_setCursor(0, 2);

 // F2)

 LCD_write(0x46); // F

 LCD_write(0x32); // 2

 LCD_write(0x29); //)

 LCD_write(0x20); // space

 // Start

 LCD_write(0x53); // S

 LCD_write(0x74); // t

 LCD_write(0x61); // a

 LCD_write(0x72); // r

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Sorting

 LCD_write(0x53); // S

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_write(0x74); // t

 LCD_write(0x69); // i

 LCD_write(0x6E); // n

 LCD_write(0x67); // g

}

int UI_mainMenuSelect(int option) // Facilitates the option selection for the main menu

{

 if (option == 11)

 {

 LCD_clear();

 LCD_setCursor(0, 0);

 LCD_write(0x50); // P

 LCD_write(0x6C); // l

 LCD_write(0x65); // e

 LCD_write(0x61); // a

86

 LCD_write(0x73); // s

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x6C); // l

 LCD_write(0x6C); // l

 LCD_write(0x6F); // o

 LCD_write(0x77); // w

 LCD_setCursor(0, 2);

 LCD_write(0x54); // T

 LCD_write(0x68); // h

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x73); // s

 LCD_write(0x74); // t

 LCD_write(0x72); // r

 LCD_write(0x75); // u

 LCD_write(0x63); // c

 LCD_write(0x74); // t

 LCD_write(0x69); // i

 LCD_write(0x6F); // o

 LCD_write(0x6E); // n

 LCD_write(0x73); // s

 nrf_delay_ms(1000);

 return 0;

 }

 else if (option == 21)

 {

 LCD_clear();

 LCD_setCursor(0, 0);

 LCD_write(0x4E); // N

 LCD_write(0x6F); // o

 LCD_write(0x77); // w

 LCD_write(0x20); // space

 LCD_setCursor(0, 2);

87

 LCD_write(0x53); // S

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_write(0x74); // t

 LCD_write(0x69); // i

 LCD_write(0x6E); // n

 LCD_write(0x67); // g

 nrf_delay_ms(1000);

 return 1;

 }

}

void UI_inputMenuPill(int slice) // Controls the UI for inputting pill data per slice

{

 LCD_clear();

 LCD_setCursor(0, 0);

 switch(slice)

 {

 case 0:

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

88

 LCD_setCursor(0, 1);

 // Pill

 LCD_write(0x50); // P

 LCD_write(0x69); // i

 LCD_write(0x6C); // l

 LCD_write(0x6C); // l

 LCD_write(0x20); // space

 // One:

 LCD_write(0x4F); // O

 LCD_write(0x6E); // n

 LCD_write(0x65); // e

 LCD_write(0x3A); // :

 LCD_setCursor(5, 2);

 // mg

 LCD_write(0x6D); // m

 LCD_write(0x67); // g

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 1:

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

89

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Pill

 LCD_write(0x50); // P

 LCD_write(0x69); // i

 LCD_write(0x6C); // l

 LCD_write(0x6C); // l

 LCD_write(0x20); // space

 // Two:

 LCD_write(0x54); // T

 LCD_write(0x77); // w

 LCD_write(0x6F); // o

 LCD_write(0x3A); // :

 LCD_setCursor(5, 2);

 // mg

 LCD_write(0x6D); // m

 LCD_write(0x67); // g

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 2:

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

90

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Pill

 LCD_write(0x50); // P

 LCD_write(0x69); // i

 LCD_write(0x6C); // l

 LCD_write(0x6C); // l

 LCD_write(0x20); // space

 // Three:

 LCD_write(0x54); // T

 LCD_write(0x68); // h

 LCD_write(0x72); // r

 LCD_write(0x65); // e

 LCD_write(0x65); // e

 LCD_write(0x3A); // :

 LCD_setCursor(5, 2);

 // mg

 LCD_write(0x6D); // m

 LCD_write(0x67); // g

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

91

 case 3:

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Pill

 LCD_write(0x50); // P

 LCD_write(0x69); // i

 LCD_write(0x6C); // l

 LCD_write(0x6C); // l

 LCD_write(0x20); // space

 // Four:

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x75); // u

 LCD_write(0x72); // r

 LCD_write(0x3A); // :

 LCD_setCursor(5, 2);

 // mg

 LCD_write(0x6D); // m

 LCD_write(0x67); // g

 LCD_setCursor(0, 2);

92

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 4:

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Pill

 LCD_write(0x50); // P

 LCD_write(0x69); // i

 LCD_write(0x6C); // l

 LCD_write(0x6C); // l

 LCD_write(0x20); // space

 // Five:

 LCD_write(0x46); // F

 LCD_write(0x69); // i

 LCD_write(0x76); // v

 LCD_write(0x65); // e

 LCD_write(0x3A); // :

93

 LCD_setCursor(5, 2);

 // mg

 LCD_write(0x6D); // m

 LCD_write(0x67); // g

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 5:

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Pill

 LCD_write(0x50); // P

 LCD_write(0x69); // i

 LCD_write(0x6C); // l

 LCD_write(0x6C); // l

94

 LCD_write(0x20); // space

 // Six:

 LCD_write(0x53); // S

 LCD_write(0x69); // i

 LCD_write(0x78); // x

 LCD_write(0x3A); // :

 LCD_setCursor(5, 2);

 // mg

 LCD_write(0x6D); // m

 LCD_write(0x67); // g

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 }

}

int UI_inputMenuPillInput(int key, int pos) // Controls the UI for inputting pill data numbers

{

 if(key == 101) // enter (start key)

 {

 return 2;

 }

 if(key == 100) // delete (stop key)

 {

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 return 1;

 }

 if(pos > 3)

95

 {

 return 0;

 }

 LCD_setCursor(pos, 2);

 switch(key)

 {

 case 0:

 LCD_write(keyNums[0]);

 break;

 case 1:

 LCD_write(keyNums[1]);

 break;

 case 2:

 LCD_write(keyNums[2]);

 break;

 case 3:

 LCD_write(keyNums[3]);

 break;

 case 4:

 LCD_write(keyNums[4]);

 break;

 case 5:

 LCD_write(keyNums[5]);

 break;

 case 6:

 LCD_write(keyNums[6]);

 break;

 case 7:

 LCD_write(keyNums[7]);

 break;

 case 8:

 LCD_write(keyNums[8]);

 break;

 case 9:

 LCD_write(keyNums[9]);

96

 break;

 }

 return 0;

}

void UI_inputMenuDays(int day)// Controls the UI for inputting pill data per pill planner

compartment

{

 LCD_clear();

 LCD_setCursor(0, 0);

 switch(day)

 {

 case 0: // Sunday AM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Sunday

 LCD_write(0x53); // S

 LCD_write(0x75); // u

 LCD_write(0x6E); // n

 LCD_write(0x64); // d

 LCD_write(0x61); // a

97

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // AM:

 LCD_write(0x41); // A

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 1: // Sunday PM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Sunday

 LCD_write(0x53); // S

 LCD_write(0x75); // u

 LCD_write(0x6E); // n

98

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // PM:

 LCD_write(0x50); // P

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 2: // Monday AM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Monday

 LCD_write(0x4D); // M

99

 LCD_write(0x6F); // o

 LCD_write(0x6E); // n

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // AM:

 LCD_write(0x41); // A

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 3: // Monday PM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

100

 // Monday

 LCD_write(0x4D); // M

 LCD_write(0x6F); // o

 LCD_write(0x6E); // n

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // PM:

 LCD_write(0x50); // P

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 4: // Tuesday AM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

101

 LCD_setCursor(0, 1);

 // Tuesday

 LCD_write(0x54); // T

 LCD_write(0x75); // u

 LCD_write(0x65); // e

 LCD_write(0x73); // s

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // AM:

 LCD_write(0x41); // A

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 5: // Tuesday PM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

102

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Tuesday

 LCD_write(0x54); // T

 LCD_write(0x75); // u

 LCD_write(0x65); // e

 LCD_write(0x73); // s

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // PM:

 LCD_write(0x50); // P

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 break;

 case 6: // Wednesday AM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

103

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Wednesday

 LCD_write(0x57); // W

 LCD_write(0x65); // e

 LCD_write(0x64); // d

 LCD_write(0x6E); // n

 LCD_write(0x65); // e

 LCD_write(0x73); // s

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // AM:

 LCD_write(0x41); // A

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 7: // Wednesday PM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

104

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Wednesday

 LCD_write(0x57); // W

 LCD_write(0x65); // e

 LCD_write(0x64); // d

 LCD_write(0x6E); // n

 LCD_write(0x65); // e

 LCD_write(0x73); // s

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // PM:

 LCD_write(0x50); // P

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 8: // Thursday AM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

105

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Thursday

 LCD_write(0x54); // T

 LCD_write(0x68); // h

 LCD_write(0x75); // u

 LCD_write(0x72); // r

 LCD_write(0x73); // s

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // AM:

 LCD_write(0x41); // A

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 9: // Thursday PM

 // Input

106

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Thursday

 LCD_write(0x54); // T

 LCD_write(0x68); // h

 LCD_write(0x75); // u

 LCD_write(0x72); // r

 LCD_write(0x73); // s

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // PM:

 LCD_write(0x50); // P

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

107

 break;

 case 10: // Friday AM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Friday

 LCD_write(0x46); // F

 LCD_write(0x72); // r

 LCD_write(0x69); // i

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // AM:

 LCD_write(0x41); // A

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

108

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 11: // Friday PM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Friday

 LCD_write(0x46); // F

 LCD_write(0x72); // r

 LCD_write(0x69); // i

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // PM:

 LCD_write(0x50); // P

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

109

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 12: // Saturday AM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Saturday

 LCD_write(0x53); // S

 LCD_write(0x61); // a

 LCD_write(0x74); // t

 LCD_write(0x75); // u

 LCD_write(0x72); // r

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

 // AM:

 LCD_write(0x41); // A

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

110

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 case 13: // Saturday PM

 // Input

 LCD_write(0x49); // I

 LCD_write(0x6E); // n

 LCD_write(0x70); // p

 LCD_write(0x75); // u

 LCD_write(0x74); // t

 LCD_write(0x20); // space

 // Dosage

 LCD_write(0x44); // D

 LCD_write(0x6F); // o

 LCD_write(0x73); // s

 LCD_write(0x61); // a

 LCD_write(0x67); // g

 LCD_write(0x65); // e

 LCD_write(0x20); // space

 // For

 LCD_write(0x46); // F

 LCD_write(0x6F); // o

 LCD_write(0x72); // r

 LCD_setCursor(0, 1);

 // Saturday

 LCD_write(0x53); // S

 LCD_write(0x61); // a

 LCD_write(0x74); // t

 LCD_write(0x75); // u

 LCD_write(0x72); // r

 LCD_write(0x64); // d

 LCD_write(0x61); // a

 LCD_write(0x79); // y

 LCD_write(0x20); // space

111

 // PM:

 LCD_write(0x50); // P

 LCD_write(0x4D); // M

 LCD_write(0x3A); // :

 LCD_setCursor(0, 2);

 // ____

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 LCD_write(0x5F); // _

 break;

 }

}

void UI_twiEnable(int option) // Enables and disables UI TWI line

{

 if(option == 1) // Disables

 {

 nrf_drv_twi_disable(&UI_twi);

 }else if(option == 0) // Enables

 {

 nrf_drv_twi_enable(&UI_twi);

 }

112

Appendix D: ULSS Code

#include <Wire.h>

#include <Servo.h>

byte I2C_OnOff;

// Sorting system and data

bool startSort = false;

bool endSort = false;

int sortData[6] = {0, 0, 0, 0, 0, 0}; // Amount of whole pills to dispense per slice

int sortDataCut[6] = {0, 0, 0, 0, 0, 0}; // Amount pills to cut and dispense per slice

int hasCutPill[6] = {0, 0, 0, 0, 0, 0}; // Amount of pills already cut per slice

// Define pin connections & motor's steps per revolution

const int dirPin = 2; //for bottom small pill holder

const int stepPin = 3; //for bottom small pill holder

const int dirPin2 = 4; //for top big pill holder

const int stepPin2 = 5; //for top big pill holder

const int stepsPerRevolution = 800;

const int stepsPerSlice = 127;

int xtra = 0;

int steps = 0;

// Defining PWM for ESC

Servo ESC;

#define MIN_PULSE_LENGTH 1000 // Minimum pulse length in µs

#define MAX_PULSE_LENGTH 2000 // Maximum pulse length in µs

#define SET_PULSE_LENGTH 1700 // sets cutting speed in µs

void setup()

{

 // Disables stepper motors to conserve power and prevent jerking from noise generated by

Arduino

 pinMode(12, OUTPUT);

 digitalWrite(12, LOW);

 pinMode(13, OUTPUT);

 digitalWrite(13, LOW);

 delay(1000);

 Serial.begin(9600);

 ESC.attach(11, MIN_PULSE_LENGTH, MAX_PULSE_LENGTH);

 pinMode(8, OUTPUT); // Controls direction

 pinMode(9, OUTPUT); // Controls power

113

 // Enable quarter micro stepping

 pinMode(6, OUTPUT);

 digitalWrite(6, HIGH);

 pinMode(7, OUTPUT);

 digitalWrite(7, HIGH);

 pinMode(dirPin, OUTPUT);

 digitalWrite(dirPin, LOW);

 pinMode(dirPin2, OUTPUT);

 digitalWrite(dirPin2, LOW);

 pinMode(stepPin, OUTPUT);

 digitalWrite(stepPin, LOW);

 pinMode(stepPin2, OUTPUT);

 digitalWrite(stepPin2, LOW);

 calibrateCutter();

 digitalWrite(12, HIGH);

 digitalWrite(13, HIGH);

 // Set motor direction clockwise

 digitalWrite(dirPin2, HIGH);

 // calibrates main pill holder

 for(int x = 0; x < 5; x++)

 {

 digitalWrite(stepPin2, HIGH);

 delayMicroseconds(2000);

 digitalWrite(stepPin2, LOW);

 delayMicroseconds(2000);

 }

 delay(1000); // Wait a second

 Wire.begin(1); // Starting TWI for arduino with address 0x1

 Serial.println("Ready to receive");

 Wire.onReceive(ULSS); // Setting up recieving event; this is a function that will be called when

the nRF51 sends data to the Arduino

 Wire.onRequest(confirm); // Seting up request event; this is a function that will be called when

the nRF51 requests data from the Arduino

}

void loop()

114

{

 if(startSort == true) // Determines whether to start the sorting or not.

 {

 for(int s = 0; s <= 5; s++)

 {

 // Sorting code //

 if(s == 0) // For position 1

 {

 if(sortData[0] == 0)

 {

 // Do nothing

 }else

 {

 for(int j = 1; j <= sortData[s]; j ++) // Dispenses pills j for a total of sortData[s]

 {

 Serial.println("sorting");

 shakeDrum();

 digitalWrite(13, LOW); // Turns off half-pill stepper to conserve power

 delay(100);

 rotateDrum(0);

 digitalWrite(13, HIGH); // Turns half-pill stepper back on

 }

 }

 if(sortDataCut[0] == 1 && hasCutPill[0] == 0) // Will cut a new pill

 {

 shakeDrum();

 digitalWrite(13, LOW); // Turns off half-pill stepper to conserve power

 delay(100);

 activateCutter(1);

 rotateDrum(1);

 activateCutter(0);

 digitalWrite(13, HIGH); // Turns half-pill stepper back on

 hasCutPill[0] = 1;

 }else if(sortDataCut[0] == 1 && hasCutPill[0] == 1) // Will dispense a cut half

 {

 // Open and close servo door

 hasCutPill[0] = 0;

 }else

 {

 // Do nothing

 }

 }else

115

 {

 // Returns both holders to next position

 rotateTopDrumDeg();

 rotateBottomDrumDeg();

 if(sortData[s] == 0)

 {

 // Do nothing

 }else

 {

 for(int j = 1; j <= sortData[s]; j ++) // Dispenses pills j for a total of sortData[s]

 {

 Serial.println("sorting");

 shakeDrum();

 digitalWrite(13, LOW); // Turns off half-pill stepper to conserve power

 delay(100);

 rotateDrum(0);

 digitalWrite(13, HIGH);

 }

 }

 if(sortDataCut[s] == 1 && hasCutPill[s] == 0) // Will dispense a cut half

 {

 shakeDrum();

 digitalWrite(13, LOW); // Turns off half-pill stepper to conserve power

 delay(100);

 activateCutter(1);

 rotateDrum(1);

 activateCutter(0);

 digitalWrite(13, HIGH);

 hasCutPill[s] = 1;

 }else if(sortDataCut[s] == 1 && hasCutPill[s] == 1) // Will dispense a cut half

 {

 // Open and close servo door

 hasCutPill[s] = 0;

 }else

 {

 // Do nothing

 }

 }

 }

 // Returns both holders back to starting position

 rotateBackToHomeTop();

116

 rotateBackToHomeBottom();

 startSort = false; // end sorting

 endSort = true; // send confirmation

 }else

 {

 // Do nothing //

 }

}

void ULSS(int nBytes) // Parses data received from master

{

 //Serial.print("Recieved data: ");

 Serial.println("recieved signal");

 int masterData = Wire.read(); // Reads incoming data

 int slice = (masterData & 0b00000111); // Parses slice number

 int pillNum = (masterData & 0b01111000) >> 3; // Parses how many pills to dispense

 int cut = (masterData & 0b10000000) >> 7; // Parses whether to cut pill or not

 sortData[slice] = pillNum;

 sortDataCut[slice] = cut;

 if(slice == 5) // Starts at 0 so 5 is the last slice to be recieved. This then enables the flag

startSort to start the sorting process in the main function.

 {

 startSort = true;

 }

 // Test code to ensure data is being received

 /*Serial.println(masterData, BIN);

 Serial.print("Slice number: ");

 Serial.println(slice, DEC);

 Serial.print("Number of pills to sort: ");

 Serial.println(pillNum, DEC);

 if(cut == 1)

 {

 Serial.println("Cut pill.");

117

 }

 else if(cut == 0)

 {

 Serial.println("Don't cut pill.");

 }*/

 while(Wire.available())

 {

 Wire.read();

 }

 return;

}

void confirm() // Sends a confirmation bit to master to tell it sorting is done.

{

 if(endSort == true)

 {

 Wire.write(0x1);

 //Serial.println("Confirmation sent.");

 endSort = false;

 delay(500);

 Wire.write(0x0);

 }else

 {

 Wire.write(0x2);

 endSort = false;

 }

}

void shakeDrum() // Shakes pill holder to dislodge pills

{

 // Set motor direction counter-clockwise

 for(int i = 0; i <= 20; i++)

 {

 digitalWrite(dirPin2, LOW);

 // Spin motor slowly

 for(int x = 0; x < 25; x++)

 {

 digitalWrite(stepPin2, HIGH);

 delayMicroseconds(300);

 digitalWrite(stepPin2, LOW);

118

 delayMicroseconds(300);

 }

 delay(150); // Wait a second

 digitalWrite(dirPin2, HIGH);

 // Spin motor slowly

 for(int x = 0; x < 25; x++)

 {

 digitalWrite(stepPin2, HIGH);

 delayMicroseconds(300);

 digitalWrite(stepPin2, LOW);

 delayMicroseconds(300);

 }

 delay(150); // Wait a second

 }

}

void rotateTopDrumDeg() // Rotates main pillholder specified amount of degrees determined by

the steps

{

 // Set motor direction counter-clockwise

 digitalWrite(dirPin2, LOW);

 // Spin motor slowly

 for(int x = 0; x < (127+xtra); x++) // Rotates stepper motor 127 steps or 54 degrees. The xtra bit

is to ensure the stepper doesnt lag behind and that the slices are aligned properly

 {

 digitalWrite(stepPin2, HIGH);

 delayMicroseconds(2000);

 digitalWrite(stepPin2, LOW);

 delayMicroseconds(2000);

 }

 steps = 127 + xtra + steps; // The amount of steps needed to rotate back to starting position

 xtra = xtra + 1;

 //steps = 127 + xtra + steps;

 delay(1000); // Wait a second

}

void rotateBottomDrumDeg() // Rotates cut half pillholder specified amount of degrees

determined by the steps

{

 // Set motor direction clockwise

 digitalWrite(dirPin, LOW);

 // Spin motor slowly

119

 for(int x = 0; x < 133; x++) // Rotates stepper motor 133 steps or 60 degrees

 {

 digitalWrite(stepPin, HIGH);

 delayMicroseconds(2000);

 digitalWrite(stepPin, LOW);

 delayMicroseconds(2000);

 }

 delay(1000); // Wait a second

}

void rotateBackToHomeTop() // Rotates main pill holder back to starting position

{

 // Set motor direction clockwise

 digitalWrite(dirPin2, HIGH);

 // Spin motor slowly

 for(int x = 0; x < (steps); x++)

 {

 digitalWrite(stepPin2, HIGH);

 delayMicroseconds(2000);

 digitalWrite(stepPin2, LOW);

 delayMicroseconds(2000);

 }

 xtra = 0;

 steps = 0;

 delay(1000); // Wait a second

}

void rotateBackToHomeBottom() // Rotates main pill holder back to starting position

{

 // Set motor direction clockwise

 digitalWrite(dirPin, HIGH);

 // Spin motor slowly

 for(int x = 0; x < 133*5; x++)

 {

 digitalWrite(stepPin, HIGH);

 delayMicroseconds(2000);

 digitalWrite(stepPin, LOW);

 delayMicroseconds(2000);

 }

 delay(1000); // Wait a second

}

void rotateDrum(int dir) // Rotates pill drum. 0 Rotates clockwise and 1 rotates counter-

clockwise

120

{

 if(dir == 0)

 {

 digitalWrite(8, LOW); // clockwise rotation

 delay(100);

 digitalWrite(9, HIGH); // Turn motor on

 delay(2200);

 digitalWrite(9, LOW); // Turn motor off

 delay(100);

 }else if(dir == 1)

 {

 digitalWrite(8, HIGH); // counter-clockwise rotation

 delay(100);

 digitalWrite(9, HIGH); // Turn motor on

 delay(2200);

 digitalWrite(9, LOW); // Turn motor off

 delay(100);

 }

}

void calibrateCutter() // Calibrates cutter motor ESC

{

 // Calibrate

 delay(5000);

 ESC.write(MAX_PULSE_LENGTH);

 delay(2000);

 ESC.write(MIN_PULSE_LENGTH);

 delay(2000);

 /*ESC.writeMicroseconds(MAX_PULSE_LENGTH);

 delay(4000);

 ESC.writeMicroseconds(MIN_PULSE_LENGTH);

 delay(5000);*/

}

void activateCutter(int pwr) // Activate cutter motor. 1 turns cutter motor on and 0 turns it off

{

 // Run cutter

 if(pwr == 1)

 {

 for (int i = MIN_PULSE_LENGTH; i <= SET_PULSE_LENGTH; i += 10) // Gradually

increases speed of the motor until desired speed of 20,000 RPM is reached.

 {

 Serial.print("Pulse length = ");

 Serial.println(i);

 ESC.writeMicroseconds(i);

121

 delay(200);

 }

 //delay(4000);

 }else if(pwr == 0)

 {

 ESC.writeMicroseconds(MIN_PULSE_LENGTH);

 }

}

122

Appendix E: LLSS Code

/*

set up two arrays for each position

motor1 (x) [Sun Mon Tus Wed Thur Fri Sat]

motor2 (y) [AM PM Final]

15 total postions

final is 1200 steps per revolution It did 6 forwards at 200 steps per revolution to reach the end

*/

#include "Wire.h"

// Define pin connections & motor's steps per revolution

const int stepsPerRevolution = 200*4;

const int dirPin = 2; //for z-axis

const int stepPin = 3; //for z-axis

const int dirPin2 = 4; //for x-axis

const int stepPin2 = 5; //for x-axis

// Enables microstepping for the steppers

const int zMicro = 6;

const int xMicro = 7;

// Enables or disables stepper motors

const int zEn = 8;

const int xEn = 9;

int zeroed = 0; // Flag to record when the system has already been zeroed.

int sortNum = 0;

int zPos = 0; // Determines whether the z axis is in the AM or PM position with 0 equalling AM

and 1 equalling PM

bool endSort = false;

bool sort = false;

void setup()

{

 // Disables stepper motors to conserve power and prevent jerking from noise generated by

Arduino

 pinMode(zEn, OUTPUT);

 digitalWrite(zEn, LOW);

123

 pinMode(xEn, OUTPUT);

 digitalWrite(xEn, LOW);

 delay(1000);

 Serial.begin(9600);

 // Declare pins as Outputs

 pinMode(stepPin, OUTPUT);

 pinMode(dirPin, OUTPUT);

 pinMode(dirPin2, OUTPUT);

 pinMode(stepPin2, OUTPUT);

 digitalWrite(stepPin, LOW);

 digitalWrite(stepPin2, LOW);

 digitalWrite(dirPin, LOW);

 digitalWrite(dirPin2, LOW);

 pinMode(zMicro, OUTPUT);

 pinMode(xMicro, OUTPUT);

 digitalWrite(zMicro, HIGH);

 digitalWrite(xMicro, HIGH);

 zeroed = 1; // Enables zeroing to begin

 Wire.begin(2); // Sets up TWI connection with an address of 0x2

 Serial.println("Ready to receive");

 Wire.onReceive(LLSS); // Setting up recieving event; this is a function that will be called when

the nRF51 sends data to the Arduino

 Wire.onRequest(confirm); // Seting up request event; this is a function that will be called when

the nRF51 requests data from the Arduino

}

void loop()

{

 if(zeroed == 1) // Zeroes both x and z axis

 {

 zero();

 }

}

void zero() // Zeroes the positions of the x and z axis stepper systems

{

124

 // Activate stepper motors

 digitalWrite(zEn, HIGH);

 digitalWrite(xEn, HIGH);

 delay(100);

 while (analogRead(A1) >= 1000) // While the limit switch is not pressed, the stepper motors

will reverse backwards

 {

 // Set motor direction counterclockwise

 digitalWrite(dirPin, LOW);

 // Spin motor quickly

 for(int x = 0; x < stepsPerRevolution/2; x++)

 {

 digitalWrite(stepPin, HIGH);

 delayMicroseconds(750);

 digitalWrite(stepPin, LOW);

 delayMicroseconds(750);

 }

 delay(1000); // Wait a second

 }

 while (analogRead(A2) >= 1000) // While the limit switch is not pressed, the stepper motors

will reverse backwards

 {

 // Set motor direction counterclockwise

 digitalWrite(dirPin2, LOW);

 // Spin motor quickly

 for(int x = 0; x < stepsPerRevolution/2; x++)

 {

 digitalWrite(stepPin2, HIGH);

 delayMicroseconds(750);

 digitalWrite(stepPin2, LOW);

 delayMicroseconds(750);

 }

 delay(1000); // Wait a second

 }

 // Turns off stepper motors to conserve power.

 digitalWrite(zEn, LOW);

 digitalWrite(xEn, LOW);

 zeroed = 0; // Ends zeroing function.

125

}

void forwardX() // Makes x axis move forward to the next compartment

{

 // Activate stepper motors

 digitalWrite(zEn, HIGH);

 digitalWrite(xEn, HIGH);

 // Set motor direction clockwise

 digitalWrite(dirPin2, HIGH);

 // Spin motor slowly

 for(int x = 0; x < 2072; x++)

 {

 digitalWrite(stepPin2, HIGH);

 delayMicroseconds(1000);

 digitalWrite(stepPin2, LOW);

 delayMicroseconds(1000);

 }

 delay(1000); // Wait a second

 // Turns off stepper motors to conserve power.

 digitalWrite(zEn, LOW);

 digitalWrite(xEn, LOW);

}

void moveZ(int dir) // Makes z axis move to and from AM and PM positions, 0 moves to AM

position and 1 moves to PM position

{

 // Activate stepper motors

 digitalWrite(zEn, HIGH);

 digitalWrite(xEn, HIGH);

 if(dir == 0) // z axis is in the PM position and will now move to the AM position

 {

 // Set motor direction counterclockwise

 digitalWrite(dirPin, LOW);

 // Spin motor quickly

 for(int x = 0; x < 2750; x++)

 {

 digitalWrite(stepPin, HIGH);

 delayMicroseconds(750);

 digitalWrite(stepPin, LOW);

 delayMicroseconds(750);

 }

126

 delay(1000); // Wait a second

 }else if(dir == 1) // z axis is in the AM position and will now move to the PM position

 {

 // Set motor direction clockwise

 digitalWrite(dirPin, HIGH);

 // Spin motor quickly

 for(int x = 0; x < 2750; x++)

 {

 digitalWrite(stepPin, HIGH);

 delayMicroseconds(750);

 digitalWrite(stepPin, LOW);

 delayMicroseconds(750);

 }

 delay(1000); // Wait a second

 }

 // Turns off stepper motors to conserve power.

 digitalWrite(zEn, LOW);

 digitalWrite(xEn, LOW);

}

void LLSS(int nBytes) // Moves x and z axis. Positions are premapped and are sequential starting

at Sunday AM position and ending at the Saturday PM position

{

 Serial.println("recieved signal");

 if(sortNum == 0) // Already at first position, no need to move

 {

 // do nothing

 }else

 {

 if((sortNum % 2) == 0 && zPos == 1) // In PM position, so now needs to move to the AM

position and next day

 {

 moveZ(0);

 zPos = 0;

 forwardX();

 }else if((sortNum % 2) == 0) // Needs to move to the next day

 {

 forwardX();

 }else if((sortNum % 2) != 0) // Needs to move to the next time of day

 {

 if(zPos == 0)

 {

 moveZ(1);

127

 zPos = 1;

 }else if(zPos == 1)

 {

 moveZ(0);

 zPos = 0;

 }

 }

 }

 sortNum = sortNum + 1;

 endSort = true;

 while(Wire.available())

 {

 Wire.read();

 }

 return;

}

void confirm() // Sends confrimation bit to master to tell it the pill planner is in position

{

 Serial.println("recieved confirm signal");

 if(endSort == true)

 {

 Serial.println("sent signal");

 Wire.write(0x1);

 //Serial.println("Confirmation sent.");

 endSort = false;

 }else

 {

 //Wire.write(0x2);

 //endSort = false;

 }

}

128

Appendix F: SolidWorks Drawings

Appendix F.1: Main Pill Holder

129

Appendix F.2: Slice Holder

130

Appendix F.3: Half Pill Holder

131

Appendix F.4: Half Pill Slices

132

Appendix F.5: Pill Holder Slice

133

Appendix F.6: LLSS Alignment

134

Appendix F.7: Pill Drum

135

Appendix F.8: Cutter Motor Mount

136

Appendix F.9: LLSS Plate Couple

137

Appendix F.10: LLSS Plate Couple Rail Mount

138

Appendix F.11: Limit Switch Mount

139

Appendix F.12: Half Pill Servo Gate

140

Appendix F.13: Drum Cover

141

Appendix G: Wiring Diagram

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Equations
	1. Introduction
	2. Background
	2.1 Products on the Market
	2.2 Cutter Design
	2.3 Microcontrollers
	2.4 TWI/I2C Communication
	2.5 Motors

	3. Design
	3.1 Concepts Generated
	3.2 Design Scope
	3.3 Design Overview
	3.4 Master Control System
	3.5 User Interface
	3.6 Upper Level Sorting System (ULSS)
	3.6.1 ULSS Programming
	3.6.2 Pill Holder Design
	3.6.3 Drum Design
	3.6.4 Funnel Design
	3.6.5 Cutter Design

	3.7 Lower Level Sorting System (LLSS)
	3.7.1 LLSS Programming

	3.8 Power Supply

	4. Construction
	5. Testing
	5.1 Shaker Test
	5.2 Sorting Test
	5.3 Cutting Test

	6. Budget
	7. Requirement Specifications
	7.1 Environmental
	7.2 Public Health, Safety, and Welfare
	7.3 Global/Political
	7.4 Ethical and Professional

	8. Lessons Learned
	9. Future Considerations
	10. Teamwork
	11. Conclusion
	References
	Appendix
	Appendix A: Failure Modes and Effect Analysis
	Appendix B: ABET Outcome 2, Design Factor Considerations
	Appendix C: Master Control System Code
	Appendix C.1: Master Control Code
	Appendix C.2: Keypad Code
	Appendix C.3: LCD Code

	Appendix D: ULSS Code
	Appendix E: LLSS Code
	Appendix F: SolidWorks Drawings
	Appendix G: Wiring Diagram

