001431124 000__ 03421cam\a2200553\a\4500 001431124 001__ 1431124 001431124 003__ OCoLC 001431124 005__ 20230308003222.0 001431124 006__ m\\\\\o\\d\\\\\\\\ 001431124 007__ cr\un\nnnunnun 001431124 008__ 210911s2021\\\\sz\\\\\\ob\\\\001\0\eng\d 001431124 019__ $$a1351841594 001431124 020__ $$a9783030786595$$q(electronic bk.) 001431124 020__ $$a3030786595$$q(electronic bk.) 001431124 020__ $$z3030786587 001431124 020__ $$z9783030786588 001431124 0247_ $$a10.1007/978-3-030-78659-5$$2doi 001431124 035__ $$aSP(OCoLC)1267752603 001431124 040__ $$aYDX$$beng$$epn$$cYDX$$dGW5XE$$dOCLCO$$dOCLCF$$dOCLCQ$$dOCLCO$$dN$T$$dOCLCQ 001431124 049__ $$aISEA 001431124 050_4 $$aQA911 001431124 08204 $$a620.1/064$$223/eng/20221128 001431124 1001_ $$aKim, Tujin,$$eauthor. 001431124 24510 $$aEquations of motion for incompressible viscous fluids :$$bwith mixed boundary conditions /$$cTujin Kim, Daomin Cao. 001431124 260__ $$aCham, Switzerland :$$bBirkhäuser,$$c2021. 001431124 300__ $$a1 online resource 001431124 336__ $$atext$$btxt$$2rdacontent 001431124 337__ $$acomputer$$bc$$2rdamedia 001431124 338__ $$aonline resource$$bcr$$2rdacarrier 001431124 4901_ $$aAdvances in mathematical fluid mechanics,$$x2297-0339 001431124 504__ $$aIncludes bibliographical references and index. 001431124 5050_ $$aMiscellanea of Analysis -- Fluid Equations -- The Steady Navier-Stokes System -- The Non-steady Navier-Stokes System -- The Steady Navier-Stokes System with Friction Boundary Conditions -- The Non-steady Navier-Stokes System with Friction Boundary Conditions -- The Steady Boussinesq System -- The Non-steady Boussinesq System -- The Steady Equations for Heat-conducting Fluids -- The Non-steady Equations for Heat-conducting Fluids. 001431124 5060_ $$aOpen access.$$5GW5XE 001431124 520__ $$aThis monograph explores the motion of incompressible fluids by presenting and incorporating various boundary conditions possible for real phenomena. The authors' approach carefully walks readers through the development of fluid equations at the cutting edge of research, and the applications of a variety of boundary conditions to real-world problems. Special attention is paid to the equivalence between partial differential equations with a mixture of various boundary conditions and their corresponding variational problems, especially variational inequalities with one unknown. A self-contained approach is maintained throughout by first covering introductory topics, and then moving on to mixtures of boundary conditions, a thorough outline of the Navier-Stokes equations, an analysis of both the steady and non-steady Boussinesq system, and more. Equations of Motion for Incompressible Viscous Fluids is ideal for postgraduate students and researchers in the fields of fluid equations, numerical analysis, and mathematical modelling. 001431124 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed September 20, 2021). 001431124 650_0 $$aFluid dynamics$$xMathematics. 001431124 650_0 $$aBoundary value problems. 001431124 650_6 $$aDynamique des fluides$$xMathématiques. 001431124 650_6 $$aProblèmes aux limites. 001431124 655_0 $$aElectronic books. 001431124 7001_ $$aCao, Daomin,$$d1963-$$eauthor. 001431124 77608 $$iPrint version: $$z3030786587$$z9783030786588$$w(OCoLC)1250511331 001431124 830_0 $$aAdvances in mathematical fluid mechanics,$$x2297-0339 001431124 852__ $$bebk 001431124 85640 $$3Springer Nature$$uhttps://link.springer.com/10.1007/978-3-030-78659-5$$zOnline Access$$91397441.2 001431124 909CO $$ooai:library.usi.edu:1431124$$pGLOBAL_SET 001431124 980__ $$aBIB 001431124 980__ $$aEBOOK 001431124 982__ $$aEbook 001431124 983__ $$aOnline 001431124 994__ $$a92$$bISE