001432001 000__ 03173cam\a2200577\a\4500 001432001 001__ 1432001 001432001 003__ OCoLC 001432001 005__ 20230309003417.0 001432001 006__ m\\\\\o\\d\\\\\\\\ 001432001 007__ cr\un\nnnunnun 001432001 008__ 200926s2021\\\\sz\\\\\\ob\\\\000\0\eng\d 001432001 019__ $$a1197838290$$a1202453162$$a1202464180$$a1237466322 001432001 020__ $$a9783030576783$$q(electronic bk.) 001432001 020__ $$a3030576787$$q(electronic bk.) 001432001 020__ $$z3030576779 001432001 020__ $$z9783030576776 001432001 0247_ $$a10.1007/978-3-030-57678-3$$2doi 001432001 0248_ $$a10.1007/978-3-030-57 001432001 035__ $$aSP(OCoLC)1197852309 001432001 040__ $$aYDX$$beng$$epn$$cYDX$$dGW5XE$$dEBLCP$$dNLW$$dLQU$$dOCLCF$$dOCLCO$$dSFB$$dOCLCQ$$dOCLCO$$dCOM$$dOCLCQ 001432001 049__ $$aISEA 001432001 050_4 $$aQA313 001432001 08204 $$a515/.48$$223 001432001 1001_ $$aMitkowski, Paweł J. 001432001 24510 $$aMathematical structures of ergodicity and chaos in population dynamics /$$cPaweł J. Mitkowski. 001432001 260__ $$aCham, Switzerland :$$bSpringer,$$c[2021] 001432001 300__ $$a1 online resource 001432001 336__ $$atext$$btxt$$2rdacontent 001432001 337__ $$acomputer$$bc$$2rdamedia 001432001 338__ $$aonline resource$$bcr$$2rdacarrier 001432001 4901_ $$aStudies in systems, decision and control ;$$vv. 312 001432001 504__ $$aIncludes bibliographical references. 001432001 5050_ $$aIntroduction -- Dynamics of the red blood cell system -- Mathematical basics -- Chaos and ergodic theory -- The Lasota-Ważewska Equation -- Lasota equation with unimodal regulation. 001432001 506__ $$aAccess limited to authorized users. 001432001 520__ $$aThis book concerns issues related to biomathematics, medicine, or cybernetics as practiced by engineers. Considered population dynamics models are still in the interest of researchers, and even this interest is increasing, especially now in the time of SARS-CoV-2 coronavirus pandemic, when models are intensively studied in order to help predict its behaviour within human population. The structures of population dynamics models and practical methods of finding their solutions are discussed. Finally, the hypothesis of the existence of non-trivial ergodic properties of the model of erythropoietic response dynamics formulated by A. Lasota in the form of delay differential equation with unimodal feedback is analysed. The research can be compared with actual medical data, as well as shows that the structures of population models can reflect the dynamic structures of reality. 001432001 650_0 $$aErgodic theory. 001432001 650_0 $$aChaotic behavior in systems. 001432001 650_0 $$aPopulation$$xMathematical models. 001432001 650_0 $$aBiomathematics. 001432001 650_6 $$aThéorie ergodique. 001432001 650_6 $$aChaos. 001432001 650_6 $$aBiomathématiques. 001432001 655_0 $$aElectronic books. 001432001 77608 $$iPrint version:$$aMitkowski, Paweł J.$$tMathematical structures of ergodicity and chaos in population dynamics.$$dCham, Switzerland : Springer, [2021]$$z3030576779$$z9783030576776$$w(OCoLC)1178904799 001432001 830_0 $$aStudies in systems, decision and control ;$$vv. 312. 001432001 852__ $$bebk 001432001 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-57678-3$$zOnline Access$$91397441.1 001432001 909CO $$ooai:library.usi.edu:1432001$$pGLOBAL_SET 001432001 980__ $$aBIB 001432001 980__ $$aEBOOK 001432001 982__ $$aEbook 001432001 983__ $$aOnline 001432001 994__ $$a92$$bISE