Linked e-resources

Details

Intro
Preface
Contents
Contributors
Polymer Insulation for HVDC Cables
DC Insulation Performance of Crosslinked Polyethylene for HVDC Cables
1 Introduction
2 DC Cable Used Polyethylene Materials
2.1 Low Density Polyethylene
2.2 Crosslinked Polyethylene
2.3 Morphology of Polyethylene Materials
2.4 Defects of Polyethylene Materials
3 DC Electrical Conductivity Characteristics
3.1 Charge Conduction
3.2 Electrical Conductivity and Electric Field Distribution
4 Space Charge Characteristics
4.1 Charge Generation
4.2 Charge Transport

5 DC Electrical Breakdown Characteristics
6 Conclusion
References
Surface Ligand Engineering of Polymer Nanodielectrics for HVDC Cables
1 Introduction
2 Surface Ligand Engineering of Polymer Nanocomposites
3 Surface Ligand Engineering for Advanced Cable Insulating Materials
3.1 Space Charge
3.2 DC Conductivity
3.3 Breakdown Strength
3.4 Electrical Tree Aging
3.5 Partial Discharge
3.6 Thermal Conductivity
4 Conclusions and Outlooks
4.1 Conclusions
4.2 Outlooks
References
Voltage Stabilizer and Its Effects on Polymer's DC Insulation Performance

1 Introduction
2 Categories, Mechanisms and Hot Research Topics of Voltage Stabilizers
2.1 Categories and Mechanisms of Voltage Stabilizers
2.2 Hot Research Topics of Voltage Stabilizers
3 Effects of Voltage Stabilizer on Polymer's DC Insulation Performance
3.1 Influences of Voltage Stabilizer and Its Analogues
3.2 Voltage Stabilizers for HVDC Cable Insulation
4 Conclusion
References
Polypropylene Insulation Materials for HVDC Cables
1 Introduction
2 Issues of Space Charge in HVDC Cables
2.1 The Key Issue in HVDC Cables-Space Charge

2.2 Space Charge Suppression Method
2.3 Space Charge Suppression Mechanism
2.4 Effect of Temperature Gradient on Space Charge in HVDC Cables
2.5 Effect of Crystal Structure on Space Charge in HVDC Cables
3 Polypropylene and Their Modification
3.1 Morphology and Crystalline-Phase-Dependent
3.2 Modification of Polypropylene
4 Polypropylene Nanocomposites
4.1 Zero-Dimension (0D) Fillers
4.2 One-Dimension (1D) Fillers
4.3 Two-Dimension (2D) Fillers
4.4 Other Structure Fillers
5 Conclusion
References

The Insulating Properties of Polypropylene Blends Modified by ULDPE and Graphene for HVDC Cables
1 Introduction
2 The Properties of PP/ULDPE Blends
2.1 PP/ULDPE Blends
2.2 Morphology Observation of PP/ULDPE Blends
2.3 Melting and Crystallization Behavior of PP/ULDPE Blends
2.4 Mechanical Properties of PP/ULDPE Blends
2.5 Electrical Properties of PP/ULDPE Blends
3 The Insulation Properties of Nano Graphene Modified PP/ULDPE Blends
3.1 Dispersion of Nano Graphene in PP/ULDPE Blends
3.2 Space Charge Characteristics of PP/ULDPE/Graphene Nanocomposites

Browse Subjects

Show more subjects...

Statistics

from
to
Export