001433541 000__ 03661cam\a2200553\i\4500 001433541 001__ 1433541 001433541 003__ OCoLC 001433541 005__ 20230309003611.0 001433541 006__ m\\\\\o\\d\\\\\\\\ 001433541 007__ cr\un\nnnunnun 001433541 008__ 210125s2021\\\\sz\\\\\\ob\\\\001\0\eng\d 001433541 019__ $$a1235594189$$a1239998035$$a1244118177$$a1249943608 001433541 020__ $$a9783030636067$$q(electronic bk.) 001433541 020__ $$a3030636062$$q(electronic bk.) 001433541 020__ $$z3030636054 001433541 020__ $$z9783030636050 001433541 0247_ $$a10.1007/978-3-030-63606-7$$2doi 001433541 035__ $$aSP(OCoLC)1232456352 001433541 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dN$T$$dOCLCO$$dEBLCP$$dGW5XE$$dSFB$$dOCLCF$$dDCT$$dLEATE$$dUKAHL$$dOCLCO$$dOCLCQ$$dCOM$$dOCLCQ 001433541 049__ $$aISEA 001433541 050_4 $$aTL574.S4$$bP78 2021eb 001433541 08204 $$a533/.293$$223 001433541 1001_ $$aPrunty, Seán,$$eauthor. 001433541 24510 $$aIntroduction to simple shock waves in air :$$bwith numerical solutions using artificial viscosity /$$cSeán Prunty. 001433541 250__ $$aSecond edition. 001433541 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2021] 001433541 300__ $$a1 online resource 001433541 336__ $$atext$$btxt$$2rdacontent 001433541 337__ $$acomputer$$bc$$2rdamedia 001433541 338__ $$aonline resource$$bcr$$2rdacarrier 001433541 347__ $$atext file 001433541 347__ $$bPDF 001433541 4901_ $$aShock wave and high pressure phenomena 001433541 504__ $$aIncludes bibliographical references and index. 001433541 5050_ $$aChapter 1. Brief outline of the equations of fluid flow -- Chapter 2. Waves of finite amplitude -- Chapter 3. Conditions across the shock: the Rankine-Hugoniot equations -- Chapter 4. Numerical treatment of plane shocks -- Chapter 5. Spherical shock waves: the self-similar solution -- Chapter 6. Numerical treatment of spherical shock waves. 001433541 506__ $$aAccess limited to authorized users. 001433541 520__ $$a"This book provides an elementary introduction to one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner, with artificial viscosity introduced into the numerical calculations in order to deal with shocks. This treatment of the subject is focused on the finite-difference approach to solve the coupled differential equations of fluid flow and presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This expanded second edition features substantial new material on sound wave parameters, Riemann's method for numerical integration of the equations of motion, approximate analytical expressions for weak shock waves, short duration piston motion, numerical results for shock wave interactions, and new appendices on the piston withdrawal problem and numerical results for a closed shock tube. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation."--$$cProvided by publisher 001433541 588__ $$aOnline resource; title from PDF title page (EBSCO, viewed February 4, 2021). 001433541 650_0 $$aShock waves. 001433541 650_6 $$aOndes de choc. 001433541 655_0 $$aElectronic books. 001433541 77608 $$iPrint version:$$z3030636054$$z9783030636050$$w(OCoLC)1200579028 001433541 830_0 $$aShock wave and high pressure phenomena. 001433541 852__ $$bebk 001433541 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-63606-7$$zOnline Access$$91397441.1 001433541 909CO $$ooai:library.usi.edu:1433541$$pGLOBAL_SET 001433541 980__ $$aBIB 001433541 980__ $$aEBOOK 001433541 982__ $$aEbook 001433541 983__ $$aOnline 001433541 994__ $$a92$$bISE