001433646 000__ 03707cam\a2200541\i\4500 001433646 001__ 1433646 001433646 003__ OCoLC 001433646 005__ 20230309003646.0 001433646 006__ m\\\\\o\\d\\\\\\\\ 001433646 007__ cr\un\nnnunnun 001433646 008__ 210202s2021\\\\si\\\\\\ob\\\\000\0\eng\d 001433646 019__ $$a1236260987$$a1239685769$$a1244119425 001433646 020__ $$a9789813362925$$q(electronic bk.) 001433646 020__ $$a9813362928$$q(electronic bk.) 001433646 020__ $$z981336291X 001433646 020__ $$z9789813362918 001433646 0247_ $$a10.1007/978-981-33-6292-5$$2doi 001433646 035__ $$aSP(OCoLC)1235871706 001433646 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dEBLCP$$dUKBTH$$dOCLCF$$dGW5XE$$dOCLCO$$dN$T$$dDCT$$dUKAHL$$dOCLCO$$dOCLCQ 001433646 049__ $$aISEA 001433646 050_4 $$aQA402.3 001433646 08204 $$a515/.642$$223 001433646 08204 $$a629.8/312$$223 001433646 1001_ $$aMa, Zhongjing,$$d1975-$$eauthor. 001433646 24510 $$aOptimal control theory :$$bthe variational method /$$cZhongjing Ma, Suli Zou. 001433646 264_1 $$aSingapore :$$bSpringer,$$c[2021] 001433646 300__ $$a1 online resource 001433646 336__ $$atext$$btxt$$2rdacontent 001433646 337__ $$acomputer$$bc$$2rdamedia 001433646 338__ $$aonline resource$$bcr$$2rdacarrier 001433646 347__ $$atext file 001433646 347__ $$bPDF 001433646 504__ $$aIncludes bibliographical references. 001433646 5050_ $$aExtrema of a Functional via the Variational Method -- Optimal Control via Variational Method -- Pontryagin's Minimum Principle -- Dynamic Programming -- Differential Games -- Discrete-Time Optimal Control Problems -- Conclusions. 001433646 506__ $$aAccess limited to authorized users. 001433646 520__ $$aThis book focuses on how to implement optimal control problems via the variational method. It studies how to implement the extrema of functional by applying the variational method and covers the extrema of functional with different boundary conditions, involving multiple functions and with certain constraints etc. It gives the necessary and sufficient condition for the (continuous-time) optimal control solution via the variational method, solves the optimal control problems with different boundary conditions, analyzes the linear quadratic regulator & tracking problems respectively in detail, and provides the solution of optimal control problems with state constraints by applying the Pontryagin's minimum principle which is developed based upon the calculus of variations. And the developed results are applied to implement several classes of popular optimal control problems and say minimum-time, minimum-fuel and minimum-energy problems and so on. As another key branch of optimal control methods, it also presents how to solve the optimal control problems via dynamic programming and discusses the relationship between the variational method and dynamic programming for comparison. Concerning the system involving individual agents, it is also worth to study how to implement the decentralized solution for the underlying optimal control problems in the framework of differential games. The equilibrium is implemented by applying both Pontryagin's minimum principle and dynamic programming. The book also analyzes the discrete-time version for all the above materials as well since the discrete-time optimal control problems are very popular in many fields. 001433646 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed March 10, 2021). 001433646 650_0 $$aControl theory. 001433646 650_6 $$aThéorie de la commande. 001433646 655_0 $$aElectronic books. 001433646 7001_ $$aZou, Suli,$$eauthor. 001433646 77608 $$iPrint version:$$z981336291X$$z9789813362918$$w(OCoLC)1224518097 001433646 852__ $$bebk 001433646 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-33-6292-5$$zOnline Access$$91397441.1 001433646 909CO $$ooai:library.usi.edu:1433646$$pGLOBAL_SET 001433646 980__ $$aBIB 001433646 980__ $$aEBOOK 001433646 982__ $$aEbook 001433646 983__ $$aOnline 001433646 994__ $$a92$$bISE