001433774 000__ 03739cam\a2200541\a\4500 001433774 001__ 1433774 001433774 003__ OCoLC 001433774 005__ 20230309003652.0 001433774 006__ m\\\\\o\\d\\\\\\\\ 001433774 007__ cr\un\nnnunnun 001433774 008__ 210208s2021\\\\sz\\\\\\o\\\\\000\0\eng\d 001433774 019__ $$a1237406288$$a1240628028 001433774 020__ $$a9783030631390$$q(electronic bk.) 001433774 020__ $$a3030631397$$q(electronic bk.) 001433774 020__ $$z3030631389 001433774 020__ $$z9783030631383 001433774 0247_ $$a10.1007/978-3-030-63139-0$$2doi 001433774 035__ $$aSP(OCoLC)1236399708 001433774 040__ $$aYDX$$beng$$epn$$cYDX$$dEBLCP$$dN$T$$dOCLCO$$dOCLCF$$dSFB$$dYDXIT$$dGW5XE$$dOCLCO$$dUKAHL$$dOCL$$dOCLCQ$$dOCLCO$$dOCLCQ 001433774 049__ $$aISEA 001433774 050_4 $$aQA76.9.Q36$$bD34 2021 001433774 08204 $$a001.4/2$$223 001433774 1001_ $$aDagnino, Aldo. 001433774 24510 $$aData analytics in the era of the industrial internet of things /$$cAldo Dagnino. 001433774 260__ $$aCham :$$bSpringer,$$c2021. 001433774 300__ $$a1 online resource 001433774 336__ $$atext$$btxt$$2rdacontent 001433774 337__ $$acomputer$$bc$$2rdamedia 001433774 338__ $$aonline resource$$bcr$$2rdacarrier 001433774 5050_ $$aChapter 1: Industrial Internet of Things Framework -- Chapter 2: Industrial Analytics -- Chapter 3: Machine Learning to Predict Fault Events in Power Distribution Systems -- Chapter 4: Analyzing Events and Alarms in Control Systems -- Chapter 5: Condition Monitoring of Rotating Machines in Power Generation Plants -- Chapter 6: Machine Learning Recommender for New Products and Services -- Chapter 7: Managing Analytic Projects in the IIoT Enterprise. 001433774 506__ $$aAccess limited to authorized users. 001433774 520__ $$aThis book presents the characteristics and benefits industrial organizations can reap from the Industrial Internet of Things (IIoT). These characteristics and benefits include enhanced competitiveness, increased proactive decision-making, improved creativity and innovation, augmented job creation, heightened agility to respond to continuously changing challenges, and intensified data-driven decision making. In a straightforward fashion, the book also helps readers understand complex concepts that are core to IIoT enterprises, such as Big Data, analytic architecture platforms, machine learning (ML) and data science algorithms, and the power of visualization to enrich the domains experts' decision making. The book also guides the reader on how to think about ways to define new business paradigms that the IIoT facilitates, as well how to increase the probability of success in managing analytic projects that are the core engine of decision making in the IIoT enterprise. Useful for any industry professional interested in advanced industrial software applications, including business managers and professionals interested in how data analytics can help industries and to develop innovative business solutions, as well as data and computer scientists who wish to bridge the analytics and computer science fields with the industrial world, and project managers interested in managing advanced analytic projects. 001433774 650_0 $$aQuantitative research. 001433774 650_0 $$aQuantitative research$$xData processing. 001433774 650_0 $$aInternet of things. 001433774 650_0 $$aArtificial intelligence$$xIndustrial applications. 001433774 650_6 $$aRecherche quantitative. 001433774 650_6 $$aRecherche quantitative$$xInformatique. 001433774 650_6 $$aInternet des objets. 001433774 650_6 $$aIntelligence artificielle$$xApplications industrielles. 001433774 655_0 $$aElectronic books. 001433774 77608 $$iPrint version:$$z3030631389$$z9783030631383$$w(OCoLC)1199330516 001433774 852__ $$bebk 001433774 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-63139-0$$zOnline Access$$91397441.1 001433774 909CO $$ooai:library.usi.edu:1433774$$pGLOBAL_SET 001433774 980__ $$aBIB 001433774 980__ $$aEBOOK 001433774 982__ $$aEbook 001433774 983__ $$aOnline 001433774 994__ $$a92$$bISE