Computer vision for X-ray testing : imaging, systems, image databases, and algorithms / Domingo Mery, Christian Pieringer.
2021
TA1634
Linked e-resources
Linked Resource
Concurrent users
Unlimited
Authorized users
Authorized users
Document Delivery Supplied
Can lend chapters, not whole ebooks
Details
Title
Computer vision for X-ray testing : imaging, systems, image databases, and algorithms / Domingo Mery, Christian Pieringer.
Author
Edition
Second edition.
ISBN
9783030567699 (electronic bk.)
3030567699 (electronic bk.)
9783030567682
3030567680
3030567699 (electronic bk.)
9783030567682
3030567680
Published
Cham : Springer, [2021]
Language
English
Description
1 online resource (xxvi, 456 pages) : illustrations (some color)
Item Number
10.1007/978-3-030-56769-9 doi
Call Number
TA1634
Dewey Decimal Classification
006.3/7
Summary
Building on its strengths as a uniquely accessible textbook combining computer vision and X-ray testing, this enhanced second edition now firmly addresses core developments in deep learning and vision, providing numerous examples and functions using the Python language. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologies in computer vision for solving important problems in industrial radiology. The theoretical coverage is strengthened with easily written code examples that the reader can modify when developing new functions for X-ray testing. Topics and features: Describes the core techniques for image processing used in X-ray testing, including image filtering, edge detection, image segmentation and image restoration Incorporates advances in deep learning, including aspects regarding convolutional neural networks, transfer learning, and generative adversarial networks Provides more than 65 examples in Python, and is supported by an associated website, including a database of X-ray images and a freely available Matlab toolbox Includes new advances in simulation approaches for baggage inspection, simulated X-ray imaging, and simulated structures (such as defects and threat objects) Presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image Examines a range of known X-ray image classifiers and classification strategies, and techniques for estimating the accuracy of a classifier Reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products This classroom-tested and hands-on text/guidebook is ideal for advanced undergraduates, graduates, and professionals interested in practically applying image processing, pattern recognition and computer vision techniques for non-destructive quality testing and security inspection. Dr. Domingo Mery is a Full Professor at the Machine Intelligence Group (GRIMA) of the Department of Computer Sciences, and Director of Research and Innovation at the School of Engineering, at the Pontifical Catholic University of Chile, Santiago, Chile. Dr. Christian Pieringer is an Adjunct Instructor at the same institution.
Bibliography, etc. Note
Includes bibliographical references and index.
Access Note
Access limited to authorized users.
Digital File Characteristics
text file
PDF
Source of Description
Online resource; title from PDF title page (SpringerLink, viewed March 3, 2021).
Added Author
Available in Other Form
3030567680
Linked Resources
Record Appears in