001434213 000__ 03651cam\a2200649\i\4500 001434213 001__ 1434213 001434213 003__ OCoLC 001434213 005__ 20230309003716.0 001434213 006__ m\\\\\o\\d\\\\\\\\ 001434213 007__ cr\nn\nnnunnun 001434213 008__ 210118s2021\\\\sz\\\\\\ob\\\\001\0\eng\d 001434213 019__ $$a1232139657$$a1232280648 001434213 020__ $$a9783030627041$$q(electronic bk.) 001434213 020__ $$a3030627047$$q(electronic bk.) 001434213 020__ $$z9783030627034 001434213 020__ $$z3030627039 001434213 0247_ $$a10.1007/978-3-030-62704-1$$2doi 001434213 035__ $$aSP(OCoLC)1238204185 001434213 040__ $$aDCT$$beng$$erda$$epn$$cDCT$$dEBLCP$$dOCLCO$$dGW5XE$$dYDX$$dOCLCO$$dOCLCF$$dOCLCO$$dOCLCQ$$dCOM$$dOCLCQ 001434213 049__ $$aISEA 001434213 050_4 $$aQA671 001434213 08204 $$a516.3/73$$223 001434213 1001_ $$aBianchini, Bruno,$$d1958-$$eauthor. 001434213 24510 $$aGeometric analysis of quasilinear inequalities on complete manifolds :$$bmaximum and compact support principles and detours on manifolds /$$cBruno Bianchini, Luciano Mari, Patrizia Pucci, Marco Rigoli. 001434213 264_1 $$aCham :$$bBirkhäuser,$$c[2021] 001434213 300__ $$a1 online resource (x, 286 pages) 001434213 336__ $$atext$$btxt$$2rdacontent 001434213 337__ $$acomputer$$bc$$2rdamedia 001434213 338__ $$aonline resource$$bcr$$2rdacarrier 001434213 4901_ $$aFrontiers in mathematics,$$x1660-8046 001434213 504__ $$aIncludes bibliographical references and index. 001434213 506__ $$aAccess limited to authorized users. 001434213 520__ $$aThis book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau's Hessian and Laplacian principles and subsequent improvements. 001434213 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed March 10, 2021). 001434213 650_0 $$aRiemannian manifolds. 001434213 650_0 $$aGeometric analysis. 001434213 650_0 $$aDifferential equations, Elliptic. 001434213 650_0 $$aGlobal analysis (Mathematics) 001434213 650_0 $$aManifolds (Mathematics) 001434213 650_6 $$aVariétés de Riemann. 001434213 650_6 $$aAnalyse géométrique. 001434213 650_6 $$aÉquations différentielles elliptiques. 001434213 650_6 $$aAnalyse globale (Mathématiques) 001434213 650_6 $$aVariétés (Mathématiques) 001434213 655_0 $$aElectronic books. 001434213 7001_ $$aMari, Luciano,$$d1983-$$eauthor. 001434213 7001_ $$aPucci, Patrizia,$$eauthor. 001434213 7001_ $$aRigoli, Marco,$$eauthor. 001434213 77608 $$iPrint version: $$z9783030627034 001434213 77608 $$iPrint version: $$z9783030627058 001434213 830_0 $$aFrontiers in mathematics,$$x1660-8046 001434213 852__ $$bebk 001434213 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-62704-1$$zOnline Access$$91397441.1 001434213 909CO $$ooai:library.usi.edu:1434213$$pGLOBAL_SET 001434213 980__ $$aBIB 001434213 980__ $$aEBOOK 001434213 982__ $$aEbook 001434213 983__ $$aOnline 001434213 994__ $$a92$$bISE