001435055 000__ 03176cam\a2200601\i\4500 001435055 001__ 1435055 001435055 003__ OCoLC 001435055 005__ 20230309003834.0 001435055 006__ m\\\\\o\\d\\\\\\\\ 001435055 007__ cr\un\nnnunnun 001435055 008__ 210326s2021\\\\sz\a\\\\ob\\\\001\0\eng\d 001435055 019__ $$a1243532529$$a1288336336 001435055 020__ $$a9783030699178$$q(electronic bk.) 001435055 020__ $$a303069917X$$q(electronic bk.) 001435055 020__ $$z3030699161 001435055 020__ $$z9783030699161 001435055 0247_ $$a10.1007/978-3-030-69917-8$$2doi 001435055 035__ $$aSP(OCoLC)1243305537 001435055 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCO$$dOCLCF$$dN$T$$dOCLCO$$dOCLCQ$$dOCLCO$$dCOM$$dWAU$$dOCLCQ 001435055 049__ $$aISEA 001435055 050_4 $$aQA641 001435055 08204 $$a516.3/6$$223 001435055 1001_ $$aBraides, Andrea,$$eauthor. 001435055 24510 $$aGeometric flows on planar lattices /$$cAndrea Braides, Margherita Solci. 001435055 264_1 $$aCham, Switzerland :$$bBirkhäuser,$$c[2021] 001435055 300__ $$a1 online resource (x, 134 pages) :$$billustrations 001435055 336__ $$atext$$btxt$$2rdacontent 001435055 337__ $$acomputer$$bc$$2rdamedia 001435055 338__ $$aonline resource$$bcr$$2rdacarrier 001435055 4901_ $$aPathways in mathematics,$$x2367-3451 001435055 504__ $$aIncludes bibliographical references and index. 001435055 5050_ $$aIntroduction: Motion on lattices -- Variational evolution -- Discrete-to-continuum limits of planar lattice energies -- Evolution of planar lattices -- Perspectives : evolutions with microstructure -- [Gamma]-limits in general lattices -- A non-trivial example with trivial minimizing movements. 001435055 506__ $$aAccess limited to authorized users. 001435055 520__ $$aThis book introduces the reader to important concepts in modern applied analysis, such as homogenization, gradient flows on metric spaces, geometric evolution, Gamma-convergence tools, applications of geometric measure theory, properties of interfacial energies, etc. This is done by tackling a prototypical problem of interfacial evolution in heterogeneous media, where these concepts are introduced and elaborated in a natural and constructive way. At the same time, the analysis introduces open issues of a general and fundamental nature, at the core of important applications. The focus on two-dimensional lattices as a prototype of heterogeneous media allows visual descriptions of concepts and methods through a large amount of illustrations. 001435055 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 20, 2021). 001435055 650_0 $$aGeometry, Differential. 001435055 650_0 $$aLattice theory. 001435055 650_0 $$aEvolution equations. 001435055 650_0 $$aGeometric measure theory. 001435055 650_6 $$aGéométrie différentielle. 001435055 650_6 $$aThéorie des treillis. 001435055 650_6 $$aÉquations d'évolution. 001435055 650_6 $$aThéorie de la mesure géométrique. 001435055 655_0 $$aElectronic books. 001435055 7001_ $$aSolci, Margherita,$$eauthor. 001435055 77608 $$iPrint version:$$z9783030699161$$w(OCoLC)1232273465 001435055 830_0 $$aPathways in mathematics,$$x2367-3451 001435055 852__ $$bebk 001435055 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-69917-8$$zOnline Access$$91397441.1 001435055 909CO $$ooai:library.usi.edu:1435055$$pGLOBAL_SET 001435055 980__ $$aBIB 001435055 980__ $$aEBOOK 001435055 982__ $$aEbook 001435055 983__ $$aOnline 001435055 994__ $$a92$$bISE