001435448 000__ 03512cam\a2200577\i\4500 001435448 001__ 1435448 001435448 003__ OCoLC 001435448 005__ 20230309003855.0 001435448 006__ m\\\\\o\\d\\\\\\\\ 001435448 007__ cr\un\nnnunnun 001435448 008__ 210402s2021\\\\sz\a\\\\ob\\\\001\0\eng\d 001435448 019__ $$a1244629623 001435448 020__ $$a9783030694036$$q(electronic bk.) 001435448 020__ $$a3030694038$$q(electronic bk.) 001435448 020__ $$z303069402X 001435448 020__ $$z9783030694029 001435448 0247_ $$a10.1007/978-3-030-69403-6$$2doi 001435448 035__ $$aSP(OCoLC)1244536840 001435448 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCO$$dOCLCF$$dN$T$$dUKAHL$$dOCLCQ$$dOCLCO$$dOCLCQ 001435448 0411_ $$aeng$$hger 001435448 049__ $$aISEA 001435448 050_4 $$aHD30.2 001435448 08204 $$a658.05$$223 001435448 1001_ $$aSeebacher, Uwe G.,$$eauthor. 001435448 24010 $$aPredictive intelligence für Manager.$$lEnglish 001435448 24510 $$aPredictive intelligence for data-driven managers :$$bprocess model, assessment-tool, IT-blueprint, competence model and case studies /$$cUwe Seebacher. 001435448 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2021] 001435448 300__ $$a1 online resource (xii, 268 pages) :$$billustrations 001435448 336__ $$atext$$btxt$$2rdacontent 001435448 337__ $$acomputer$$bc$$2rdamedia 001435448 338__ $$aonline resource$$bcr$$2rdacarrier 001435448 4901_ $$aFuture of business and finance,$$x2662-2467 001435448 504__ $$aIncludes bibliographical references and index. 001435448 5050_ $$aPredictive Intelligence and The Basic Economic Principles -- Predictive Intelligence at A Glance -- The Predictive Intelligence Ecosystem -- The Predictive Intelligence Maturity Model -- The Predictive Intelligence Self-Assessment -- The process model for Predictive Intelligence -- The Predictive Intelligence TechStack (PITechStack) -- The Predictive Intelligence Team -- The Predictive Intelligence Case Studies -- Why It Remains Exciting. 001435448 506__ $$aAccess limited to authorized users. 001435448 520__ $$aThis book describes how companies can easily and pragmatically set up and realize the path to a data-driven enterprise, especially in the marketing practice, without external support and additional investments. Using a predictive intelligence (PI) ecosystem, the book first introduces and explains the most important concepts and terminology. The PI maturity model then describes the phases in which you can build a PI ecosystem in your company. The book also demonstrates a PI self-test which helps managers identify the initial steps. In addition, a blueprint for a PI tech stack is defined for the first time, showing how IT can best support the topic. Finally, the PI competency model summarizes all elements into an action model for the company. The entire book is underpinned with practical examples, and case studies show how predictive intelligence, in the spirit of data-driven management, can be used profitably in the short, medium, and long terms. 001435448 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 21, 2021). 001435448 650_0 $$aPredictive analytics. 001435448 650_0 $$aBusiness$$xData processing. 001435448 650_0 $$aStrategic planning. 001435448 650_6 $$aGestion$$xInformatique. 001435448 650_6 $$aPlanification stratégique. 001435448 655_0 $$aElectronic books. 001435448 77608 $$iPrint version:$$z9783030694029$$w(OCoLC)1235416459 001435448 830_0 $$aFuture of business and finance,$$x2662-2467 001435448 852__ $$bebk 001435448 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-69403-6$$zOnline Access$$91397441.1 001435448 909CO $$ooai:library.usi.edu:1435448$$pGLOBAL_SET 001435448 980__ $$aBIB 001435448 980__ $$aEBOOK 001435448 982__ $$aEbook 001435448 983__ $$aOnline 001435448 994__ $$a92$$bISE