001435569 000__ 06419cam\a2200685\i\4500 001435569 001__ 1435569 001435569 003__ OCoLC 001435569 005__ 20230309003901.0 001435569 006__ m\\\\\o\\d\\\\\\\\ 001435569 007__ cr\un\nnnunnun 001435569 008__ 210408s2021\\\\sz\\\\\\ob\\\\000\0\eng\d 001435569 019__ $$a1245667177$$a1288336346 001435569 020__ $$a9783030679170$$q(electronic bk.) 001435569 020__ $$a3030679179$$q(electronic bk.) 001435569 020__ $$z9783030679163 001435569 020__ $$z3030679160 001435569 0247_ $$a10.1007/978-3-030-67917-0$$2doi 001435569 035__ $$aSP(OCoLC)1245472280 001435569 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCO$$dOCLCF$$dN$T$$dOCLCQ$$dOCLCO$$dCOM$$dSFB$$dOCLCQ 001435569 049__ $$aISEA 001435569 050_4 $$aQC175.25.S8 001435569 08204 $$a530.13/8$$223 001435569 1001_ $$aNedjalkov, Mihail,$$eauthor. 001435569 24510 $$aStochastic approaches to electron transport in micro- and nanostructures /$$cMihail Nedjalkov, Ivan Dimov, Siegfried Selberherr. 001435569 264_1 $$aCham :$$bBirkhäuser,$$c[2021] 001435569 300__ $$a1 online resource 001435569 336__ $$atext$$btxt$$2rdacontent 001435569 337__ $$acomputer$$bc$$2rdamedia 001435569 338__ $$aonline resource$$bcr$$2rdacarrier 001435569 4901_ $$aModeling and simulation in science, engineering and technology 001435569 504__ $$aIncludes bibliographical references. 001435569 5050_ $$aIntro -- Preface -- Introduction to the Parts -- Contents -- Part I Aspects of Electron Transport Modeling -- 1 Concepts of Device Modeling -- 1.1 About Microelectronics -- 1.2 The Role of Modeling -- 1.3 Modeling of Semiconductor Devices -- 1.3.1 Basic Modules -- 1.3.2 Transport Models -- 1.3.3 Device Modeling: Aspects -- 2 The Semiconductor Model: Fundamentals -- 2.1 Crystal Lattice Electrons -- 2.1.1 Band Structure -- 2.1.2 Carrier Dynamics -- 2.1.3 Charge Transport -- 2.2 Lattice Imperfections -- 2.2.1 Phonons -- 2.2.2 Phonon Scattering -- 3 Transport Theories in Phase Space 001435569 5058_ $$a3.1 Classical Transport: Boltzmann Equation -- 3.1.1 Phenomenological Derivation -- 3.1.2 Parametrization -- 3.1.3 Classical Distribution Function -- 3.2 Quantum Transport: Wigner Equation -- 3.2.1 Operator Mechanics -- 3.2.2 Quantum Mechanics in Phase Space -- 3.2.3 Derivation of the Wigner Equation -- 3.2.4 Properties of the Wigner Equation -- 3.2.5 Classical Limit of the Wigner Equation -- 4 Monte Carlo Computing -- 4.1 The Monte Carlo Method for Solving Integrals -- 4.2 The Monte Carlo Method for Solving Integral Equations -- 4.3 Monte Carlo Integration and Variance Analysis 001435569 5058_ $$aPart II Stochastic Algorithms for Boltzmann Transport -- 5 Homogeneous Transport: Empirical Approach -- 5.1 Single-Particle Algorithm -- 5.1.1 Single-Particle Trajectory -- 5.1.2 Mean Values -- 5.1.3 Concept of Self-Scattering -- 5.1.4 Boundary Conditions -- 5.2 Ensemble Algorithm -- 5.3 Algorithms for Statistical Enhancement -- 6 Homogeneous Transport: Stochastic Approach -- 6.1 Trajectory Integral Algorithm -- 6.2 Backward Algorithm -- 6.3 Iteration Approach -- 6.3.1 Derivation of the Backward Algorithm -- 6.3.2 Derivation of Empirical Algorithms -- 6.3.3 Featured Applications 001435569 5058_ $$a7 Small Signal Analysis -- 7.1 Empirical Approach -- 7.1.1 Stationary Algorithms -- 7.1.2 Time Dependent Algorithms -- 7.2 Iteration Approach: Stochastic Model -- 7.3 Iteration Approach: Generalizing the Empirical Algorithms -- 7.3.1 Derivation of Finite Difference Algorithms -- 7.3.2 Derivation of Collinear Perturbation Algorithms -- 8 Inhomogeneous Stationary Transport -- 8.1 Stationary Conditions -- 8.2 Iteration Approach: Forward Stochastic Model -- 8.2.1 Adjoint Equation -- 8.2.2 Boundary Conditions -- 8.3 Iteration Approach: Single-Particle Algorithm and Ergodicity 001435569 5058_ $$a8.3.1 Averaging on Before-Scattering States -- 8.3.2 Averaging in Time: Ergodicity -- 8.3.3 The Choice of Boundary -- 8.4 Iteration Approach: Trajectory Splitting Algorithm -- 8.5 Iteration Approach: Modified Backward Algorithm -- 8.6 A Comparison of Forward and Backward Approaches -- 9 General Transport: Self-Consistent Mixed Problem -- 9.1 Formulation of the Problem -- 9.2 The Adjoint Equation -- 9.3 Initial and Boundary Conditions -- 9.3.1 Initial Condition -- 9.3.2 Boundary Conditions -- 9.3.3 Carrier Number Fluctuations -- 9.4 Stochastic Device Modeling: Features -- 10 Event Biasing 001435569 506__ $$aAccess limited to authorized users. 001435569 520__ $$aThe book serves as a synergistic link between the development of mathematical models and the emergence of stochastic (Monte Carlo) methods applied for the simulation of current transport in electronic devices. Regarding the models, the historical evolution path, beginning from the classical charge carrier transport models for microelectronics to current quantum-based nanoelectronics, is explicatively followed. Accordingly, the solution methods are elucidated from the early phenomenological single particle algorithms applicable for stationary homogeneous physical conditions up to the complex algorithms required for quantum transport, based on particle generation and annihilation. The book fills the gap between monographs focusing on the development of the theory and the physical aspects of models, their application, and their solution methods and monographs dealing with the purely theoretical approaches for finding stochastic solutions of Fredholm integral equations. 001435569 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 14, 2021). 001435569 650_0 $$aElectron transport$$xMathematical models. 001435569 650_0 $$aCharge carrier processes. 001435569 650_0 $$aMicroelectronics$$xMathematical models. 001435569 650_0 $$aNanoelectronics$$xMathematical models. 001435569 650_0 $$aMonte Carlo method. 001435569 650_6 $$aÉlectrons$$xTransport$$xModèles mathématiques. 001435569 650_6 $$aMicroélectronique$$xModèles mathématiques. 001435569 650_6 $$aNanoélectronique$$xModèles mathématiques. 001435569 650_6 $$aMéthode de Monte-Carlo. 001435569 655_7 $$aLlibres electrònics.$$2thub 001435569 655_0 $$aElectronic books. 001435569 7001_ $$aDimov, Ivan,$$d1963-$$eauthor. 001435569 7001_ $$aSelberherr, Siegfried,$$d1955-$$eauthor. 001435569 77608 $$iPrint version: $$z3030679160$$z9783030679163$$w(OCoLC)1227382714 001435569 830_0 $$aModeling and simulation in science, engineering & technology. 001435569 852__ $$bebk 001435569 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-67917-0$$zOnline Access$$91397441.1 001435569 909CO $$ooai:library.usi.edu:1435569$$pGLOBAL_SET 001435569 980__ $$aBIB 001435569 980__ $$aEBOOK 001435569 982__ $$aEbook 001435569 983__ $$aOnline 001435569 994__ $$a92$$bISE