001435920 000__ 04688cam\a2200709\i\4500 001435920 001__ 1435920 001435920 003__ OCoLC 001435920 005__ 20230309003959.0 001435920 006__ m\\\\\o\\d\\\\\\\\ 001435920 007__ cr\cn\nnnunnun 001435920 008__ 210421s2021\\\\sz\a\\\\o\\\\\101\0\eng\d 001435920 019__ $$a1254087866 001435920 020__ $$a9783030728625$$q(electronic bk.) 001435920 020__ $$a3030728625$$q(electronic bk.) 001435920 020__ $$z9783030728618 001435920 0247_ $$a10.1007/978-3-030-72862-5$$2doi 001435920 035__ $$aSP(OCoLC)1246784382 001435920 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dOCLCO$$dEBLCP$$dOCLCF$$dDCT$$dOCLCO$$dOCLCQ$$dCOM$$dOCLCQ 001435920 049__ $$aISEA 001435920 050_4 $$aRC78.7.D53 001435920 08204 $$a616.07/54$$223 001435920 1112_ $$aCerebral Aneurysm Detection and Analysis$$n(1st :$$d2020 :$$cOnline) 001435920 24510 $$aCerebral aneurysm detection :$$bfirst challenge, CADA 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, proceedings /$$cAnja Hennemuth, Leonid Goubergrits, Matthias Ivantsits, Jan-Martin Kuhnigk (eds.). 001435920 24630 $$aCADA 2020 001435920 264_1 $$aCham :$$bSpringer,$$c[2021] 001435920 300__ $$a1 online resource (x, 113 pages) :$$billustrations (chiefly color) 001435920 336__ $$atext$$btxt$$2rdacontent 001435920 337__ $$acomputer$$bc$$2rdamedia 001435920 338__ $$aonline resource$$bcr$$2rdacarrier 001435920 347__ $$atext file 001435920 347__ $$bPDF 001435920 4901_ $$aLecture notes in computer science ;$$v12643 001435920 4901_ $$aLNCS sublibrary: SL6. Image processing, computer vision, pattern recognition, and graphics 001435920 500__ $$aInternational conference proceedings. 001435920 500__ $$aIncludes author index. 001435920 5050_ $$aOverview of the CADA Challenge at MICCAI 2020 -- Cerebral Aneurysm Detection and Analysis Challenge 2020 (CADA) -- Introduction -- CADA: Clinical Background and Motivation -- Cerebral Aneurysm Detection -- Deep Learning-Based 3D U-Net Cerebral Aneurysm Detection -- Detect and Identify Aneurysms Based on Ajusted 3D Attention Unet -- Cerebral Aneurysm Segmentation -- A$\nu$-net: Automatic Detection and Segmentation of Aneurysm -- 3D Attention U-Net with pretraining: A Solution to CADA-Aneurysm Segmentation Challenge -- Exploring Large Context for Cerebral Aneurysm Segmentation -- Cerebral Aneurysm Rupture Risk Estimation -- CADA Challenge: Rupture risk assessment using Computational Fluid Dynamics -- Cerebral Aneurysm Rupture Risk Estimation Using XGBoost and Fully Connected Neural Network -- Intracranial aneurysm rupture risk estimation utilizing vessel-graphs and machine learning -- Intracranial aneurysm rupture prediction with computational fluid dynamics point clouds. 001435920 506__ $$aAccess limited to authorized users. 001435920 520__ $$aThis book constitutes the First Cerebral Aneurysm Detection Challenge, CADA 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in October 2020. The conference was planned to take place in Lima, Peru, and took place virtually due to the COVID-19 pandemic. The 9 regular papers presented in this volume, together with an overview and one introduction paper, were carefully reviewed and selected for inclusion in the book. The papers were organized in topical sections as follows: cerebral aneurysm detection; cerebral aneurysm segmentation; and cerebral aneurysm rupture risk estimation. 001435920 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 21, 2021). 001435920 650_0 $$aDiagnostic imaging$$xDigital techniques$$vCongresses. 001435920 650_0 $$aIntracranial aneurysms$$xImaging$$vCongresses. 001435920 650_6 $$aImagerie pour le diagnostic$$xTechniques numériques$$vCongrès. 001435920 650_6 $$aAnévrisme cérébral$$xImagerie$$vCongrès. 001435920 655_7 $$aConference papers and proceedings.$$2fast$$0(OCoLC)fst01423772 001435920 655_7 $$aConference papers and proceedings.$$2lcgft 001435920 655_7 $$aActes de congrès.$$2rvmgf 001435920 655_0 $$aElectronic books. 001435920 7001_ $$aHennemuth, Anja,$$eeditor. 001435920 7001_ $$aGoubergrits, Leonid,$$eeditor. 001435920 7001_ $$aIvantsits, Matthias,$$eeditor. 001435920 7001_ $$aKuhnigk, Jan-Martin,$$eeditor. 001435920 7112_ $$aInternational Conference on Medical Image Computing and Computer-Assisted Intervention$$n(23rd :$$d2020 :$$cOnline) 001435920 77608 $$iPrint version: $$z9783030728618 001435920 77608 $$iPrint version: $$z9783030728632 001435920 830_0 $$aLecture notes in computer science ;$$v12643. 001435920 830_0 $$aLNCS sublibrary.$$nSL 6,$$pImage processing, computer vision, pattern recognition, and graphics. 001435920 852__ $$bebk 001435920 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-72862-5$$zOnline Access$$91397441.1 001435920 909CO $$ooai:library.usi.edu:1435920$$pGLOBAL_SET 001435920 980__ $$aBIB 001435920 980__ $$aEBOOK 001435920 982__ $$aEbook 001435920 983__ $$aOnline 001435920 994__ $$a92$$bISE