001436035 000__ 03879cam\a2200529\i\4500 001436035 001__ 1436035 001436035 003__ OCoLC 001436035 005__ 20230309004005.0 001436035 006__ m\\\\\o\\d\\\\\\\\ 001436035 007__ cr\cn\nnnunnun 001436035 008__ 210427s2021\\\\sz\a\\\\ob\\\\001\0\eng\d 001436035 019__ $$a1284940872$$a1287143219 001436035 020__ $$a9783030602208$$q(electronic bk.) 001436035 020__ $$a3030602206$$q(electronic bk.) 001436035 020__ $$z9783030602192$$q(print) 001436035 0247_ $$a10.1007/978-3-030-60220-8$$2doi 001436035 035__ $$aSP(OCoLC)1247895423 001436035 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dOCLCO$$dOCLCF$$dOCLCQ$$dOCLCO$$dOCLCQ$$dSFB 001436035 049__ $$aISEA 001436035 050_4 $$aQC174.2.W28 001436035 08204 $$a530.12/4$$223 001436035 1001_ $$aAmbrosio, Vincenzo,$$eauthor. 001436035 24510 $$aNonlinear fractional Schrödinger equations in R^N /$$cVincenzo Ambrosio. 001436035 264_1 $$aCham, Switzerland :$$bBirkhäuser,$$c[2021]. 001436035 300__ $$a1 online resource (xvii, 662 pages) :$$billustrations 001436035 336__ $$atext$$btxt$$2rdacontent 001436035 337__ $$acomputer$$bc$$2rdamedia 001436035 338__ $$aonline resource$$bcr$$2rdacarrier 001436035 4901_ $$aFrontiers in mathematics, Frontiers in elliptic and parabolic problems,$$x2730-549X 001436035 504__ $$aIncludes bibliographical references and index. 001436035 5050_ $$aSome abstract results -- Fractional scalar field equations -- Ground states for a pseudo-relativistic Schrödinger equation -- Ground states for a superlinear fractional Schrödinger equation with potentials -- Fractional Schrödinger equations with Rabinowitz condition -- Fractional Schrödinger equations with del Pino-Felmer assumptions -- Fractional Schrödinger equations with superlinear or asymptotically linear nonlinearities -- Multiplicity and concentration results for a fractional Choquard equation -- A multiplicity result for a fractional Kirchho equation with a general nonlinearity -- Multiplicity and concentration of positive solutions for a fractional Kirchho equation -- Concentrating solutions for a fractional Kirchho equation with critical growth -- Multiplicity and concentration results for a fractional Schrödinger Poisson system with critical growth -- An existence result for a fractional Kirchho -Schrödinger-Poisson system -- Multiple positive solutions for a non-homogeneous fractional Schrödinger equation -- Sign-changing solutions for a fractional Schrödinger equation with vanishing potentials -- Fractional Schrödinger equations with magnetic fields. 001436035 506__ $$aAccess limited to authorized users. 001436035 520__ $$aThis monograph presents recent results concerning nonlinear fractional elliptic problems in the whole space. More precisely, it investigates the existence, multiplicity and qualitative properties of solutions for fractional Schrödinger equations by applying suitable variational and topological methods. The book is mainly intended for researchers in pure and applied mathematics, physics, mechanics, and engineering. However, the material will also be useful for students in higher semesters and young researchers, as well as experienced specialists working in the field of nonlocal PDEs. This is the first book to approach fractional nonlinear Schrödinger equations by applying variational and topological methods. 001436035 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 27, 2021). 001436035 650_0 $$aGross-Pitaevskii equations. 001436035 650_0 $$aFractional calculus. 001436035 650_6 $$aÉquations de Gross-Pitaevskii. 001436035 650_6 $$aDérivées fractionnaires. 001436035 655_0 $$aElectronic books. 001436035 77608 $$z3-030-60219-2 001436035 830_0 $$aFrontiers in mathematics.$$pFrontiers in elliptic and parabolic problems,$$x2730-549X 001436035 852__ $$bebk 001436035 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-60220-8$$zOnline Access$$91397441.1 001436035 909CO $$ooai:library.usi.edu:1436035$$pGLOBAL_SET 001436035 980__ $$aBIB 001436035 980__ $$aEBOOK 001436035 982__ $$aEbook 001436035 983__ $$aOnline 001436035 994__ $$a92$$bISE