001436476 000__ 05043cam\a2200529\a\4500 001436476 001__ 1436476 001436476 003__ OCoLC 001436476 005__ 20230309004028.0 001436476 006__ m\\\\\o\\d\\\\\\\\ 001436476 007__ cr\un\nnnunnun 001436476 008__ 210511s2021\\\\sz\\\\\\o\\\\\001\0\eng\d 001436476 020__ $$a9783030598051$$q(electronic bk.) 001436476 020__ $$a3030598055$$q(electronic bk.) 001436476 020__ $$z3030598047 001436476 020__ $$z9783030598044 001436476 0247_ $$a10.1007/978-3-030-59805-1$$2doi 001436476 035__ $$aSP(OCoLC)1250307362 001436476 040__ $$aYDX$$beng$$epn$$cYDX$$dGW5XE$$dOCLCO$$dEBLCP$$dOCLCF$$dOCLCO$$dUKAHL$$dOCLCQ$$dCOM$$dOCLCO$$dOCLCQ 001436476 049__ $$aISEA 001436476 050_4 $$aQH505 001436476 08204 $$a571.4$$223 001436476 24500 $$aPhysics of biological oscillators :$$bnew insights into non-equilibrium and non-autonomous systems /$$cAneta Stefanovska, Peter V.E. McClintock, editors. 001436476 260__ $$aCham :$$bSpringer,$$c2021. 001436476 300__ $$a1 online resource 001436476 336__ $$atext$$btxt$$2rdacontent 001436476 337__ $$acomputer$$bc$$2rdamedia 001436476 338__ $$aonline resource$$bcr$$2rdacarrier 001436476 4901_ $$aUnderstanding complex systems,$$x1860-0832 001436476 4901_ $$aSpringer complexity 001436476 500__ $$aIncludes index. 001436476 5050_ $$aChapter 1. Introduction -- Part 1. Theory -- Chapter 2. Phase and amplitude description of complex oscillatory patterns in reaction diffusion systems -- Chapter 3. Reduced phase models of oscillatory neural networks -- Chapter 4. Nonautonomous attractors -- Chapter 5. Normal hyperbolicity for non-autonomous oscillators and oscillator networks -- Chapter 6. Synchronisation and non-autonomicity -- Chapter 7. Non-asymptotic-time dynamics -- Chapter 8. Synchronization of coupled oscillators, phase transitions and entropy production -- Part 2. Model-Driven and Data-Driven approaches -- Chapter 9. On localised modes in bio-inspired hierarchically organised oscillatory chains -- Chapter 10. Useful transformations from non-autonomous to autonomous systems -- Chapter 11. Coupling functions in neuroscience -- Chapter 12. Phase reconstruction with iterated Hilbert transforms -- Part 3. Biological Oscillators -- Chapter 13. Oscillations in yeast glycolysis Lars Folke Olsen and Anita Lunding -- Chapter 14. Oscillations, rhythms and synchronized time bases: the key signatures of life -- Chapter 15. Glycolytic oscillations in cancer cells -- Chapter 16. Mechanism and consequence of vasomotion -- Chapter 17. Biological oscillations of vascular origin and their meaning: in vivo studies of arteriolar vasomotion -- Chapter 18. Phase coherence of finger skin blood flow oscillations induced by controlled breathing in humans -- Chapter 19. Complexity-based analysis of microvascular blood flow in human skin -- Chapter 20. Modulations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography -- Chapter 21. Brain morphological and functional networks: implications for neurodegeneration -- Part 4. Applications -- Chapter 22. Predicting epileptic seizures : an update -- Chapter 23. General anæsthesia and oscillations in human physiology: the BRACCIA project -- Chapter 24. Processed EEG as a measure of brain activity during anaesthesia -- Chapter 25. Medical products inspired by biological oscillators: intermittent pneumatic compression and the microcirculation -- Chapter 26. Phase coherence between cardiovascular oscillations in malaria: the basis for a possible diagnostic test -- Part 5. Outlook -- Chapter 27. Outlook. 001436476 506__ $$aAccess limited to authorized users. 001436476 520__ $$aThis book, based on a selection of invited presentations from a topical workshop, focusses on time-variable oscillations and their interactions. The problem is challenging, because the origin of the time variability is usually unknown. In mathematical terms, the oscillations are non-autonomous, reflecting the physics of open systems where the function of each oscillator is affected by its environment. Time-frequency analysis being essential, recent advances in this area, including wavelet phase coherence analysis and nonlinear mode decomposition, are discussed. Some applications to biology and physiology are described. Although the most important manifestation of time-variable oscillations is arguably in biology, they also crop up in, e.g. astrophysics, or for electrons on superfluid helium. The book brings together the research of the best international experts in seemingly very different disciplinary areas. 001436476 650_0 $$aBiophysics. 001436476 650_6 $$aBiophysique. 001436476 655_0 $$aElectronic books. 001436476 7001_ $$aStefanovska, Aneta,$$eeditor. 001436476 7001_ $$aMcClintock, P. V. E.,$$eeditor. 001436476 77608 $$iPrint version:$$tPhysics of biological oscillators.$$dCham : Springer, 2021$$z3030598047$$z9783030598044$$w(OCoLC)1191237121 001436476 830_0 $$aUnderstanding complex systems,$$x1860-0832 001436476 830_0 $$aSpringer complexity. 001436476 852__ $$bebk 001436476 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-59805-1$$zOnline Access$$91397441.1 001436476 909CO $$ooai:library.usi.edu:1436476$$pGLOBAL_SET 001436476 980__ $$aBIB 001436476 980__ $$aEBOOK 001436476 982__ $$aEbook 001436476 983__ $$aOnline 001436476 994__ $$a92$$bISE