001437067 000__ 04928cam\a2200637\i\4500 001437067 001__ 1437067 001437067 003__ OCoLC 001437067 005__ 20230309004129.0 001437067 006__ m\\\\\o\\d\\\\\\\\ 001437067 007__ cr\cn\nnnunnun 001437067 008__ 210602s2021\\\\sz\a\\\\ob\\\\001\0\eng\d 001437067 019__ $$a1253354011$$a1262689963 001437067 020__ $$a9783030708450$$q(electronic bk.) 001437067 020__ $$a3030708454$$q(electronic bk.) 001437067 020__ $$a9783030708467$$q(print) 001437067 020__ $$a3030708462 001437067 020__ $$a9783030708474$$q(print) 001437067 020__ $$a3030708470 001437067 020__ $$z9783030708443$$q(print) 001437067 020__ $$z3030708446 001437067 0247_ $$a10.1007/978-3-030-70845-0$$2doi 001437067 035__ $$aSP(OCoLC)1253676649 001437067 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dOCLCO$$dEBLCP$$dOCLCF$$dVT2$$dUKAHL$$dOCLCQ$$dOCLCO$$dCOM$$dOCLCQ 001437067 049__ $$aISEA 001437067 050_4 $$aQC6.4.C56 001437067 08204 $$a530.15$$223 001437067 1001_ $$aRobert, Didier,$$eauthor. 001437067 24510 $$aCoherent states and applications in mathematical physics /$$cDidier Robert, Monique Combescure. 001437067 250__ $$aSecond edition. 001437067 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2021] 001437067 300__ $$a1 online resource (xvii, 577 pages) :$$billustrations (some color) 001437067 336__ $$atext$$btxt$$2rdacontent 001437067 337__ $$acomputer$$bc$$2rdamedia 001437067 338__ $$aonline resource$$bcr$$2rdacarrier 001437067 347__ $$atext file 001437067 347__ $$bPDF 001437067 4901_ $$aTheoretical and mathematical physics,$$x1864-5879 001437067 504__ $$aIncludes bibliographical references and indexes. 001437067 5050_ $$aThe standard coherent states of quantum mechanics -- The Weyl-Heisenberg group and the coherent states of arbitrary profile -- The coherent states of the Harmonic Oscillator -- From Schrödinger to Fock-Bargmann representation -- Weyl quantization and coherent states: Classical and Quantum observables -- Wigner function -- Coherent states and operator norm estimates -- Product rule and applications -- Husimi functions, frequency sets and propagation -- The Wick and anti-Wick quantization -- The generalized coherent states in the sense of Perelomov -- The SU(1,1) coherent states: Definition and properties -- The squeezed states -- The SU(2) coherent states -- The quantum quadratic Hamiltonians: The propagator of quadratic quantum Hamiltonians -- The metaplectic transformations -- The propagation of coherent states -- Representation of the Weyl symbols of the metaplectic operators -- The semiclassical evolution of coherent states -- The van Vleck and Hermann-Kluk approximations -- The semiclassical Gutzwiller trace formula using coherent states decomposition -- The hydrogen atom coherent states: Definition and properties -- The localization around Kepler orbits -- The quantum singular oscillator: The two-body case -- The N-body case. 001437067 506__ $$aAccess limited to authorized users. 001437067 520__ $$aThis second edition of the outstanding monograph on coherent states by Combescure and Robert published in 2012 is enriched with figures, historical information and numerical simulations and enlarged with five new chapters presenting important rigorous results obtained in the recent years. The new chapters include various applications such as to the time dependent Schroedinger equation and the Ehrenfest time, to the growth of norms and energy exchanges, to chaotic systems and classical systems with quantum ergodic behavior, and to open quantum systems, and to adiabatic decoupling for multicomponent systems Overall, this book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, etc.). It goes beyond existing books on coherent states in terms of a rigorous mathematical framework. 001437067 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 2, 2021). 001437067 650_0 $$aCoherent states. 001437067 650_0 $$aMathematical physics. 001437067 650_6 $$aÉtats cohérents. 001437067 650_6 $$aPhysique mathématique. 001437067 655_0 $$aElectronic books. 001437067 7001_ $$aCombescure, Monique,$$eauthor. 001437067 77608 $$iPrint version:$$aRobert, Didier.$$tCoherent states and applications in mathematical physics.$$bSecond edition.$$dCham, Switzerland : Springer, [2021]$$z3030708446$$z9783030708443$$w(OCoLC)1237348442 001437067 830_0 $$aTheoretical and mathematical physics (Springer (Firm)),$$x1864-5879 001437067 852__ $$bebk 001437067 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-70845-0$$zOnline Access$$91397441.1 001437067 909CO $$ooai:library.usi.edu:1437067$$pGLOBAL_SET 001437067 980__ $$aBIB 001437067 980__ $$aEBOOK 001437067 982__ $$aEbook 001437067 983__ $$aOnline 001437067 994__ $$a92$$bISE