001437084 000__ 05439cam\a2200697\i\4500 001437084 001__ 1437084 001437084 003__ OCoLC 001437084 005__ 20230309004130.0 001437084 006__ m\\\\\o\\d\\\\\\\\ 001437084 007__ cr\cn\nnnunnun 001437084 008__ 210604s2021\\\\sz\a\\\\o\\\\\101\0\eng\d 001437084 019__ $$a1253353303$$a1262669652 001437084 020__ $$a9783030728502$$q(electronic bk.) 001437084 020__ $$a3030728501$$q(electronic bk.) 001437084 020__ $$a9783030728519$$q(print) 001437084 020__ $$a303072851X 001437084 020__ $$a9783030728526$$q(print) 001437084 020__ $$a3030728528 001437084 020__ $$z9783030728496$$q(print) 001437084 020__ $$z3030728498 001437084 0247_ $$a10.1007/978-3-030-72850-2$$2doi 001437084 035__ $$aSP(OCoLC)1255181817 001437084 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dOCLCO$$dYDX$$dOCLCF$$dVT2$$dUKAHL$$dOCLCQ$$dCOM$$dOCLCO$$dSFB$$dOCLCQ 001437084 049__ $$aISEA 001437084 050_4 $$aQA377 001437084 08204 $$a515/.3535$$223 001437084 1112_ $$aInternational Conference Numerical Methods for Hyperbolic Problem$$n(6th :$$d2019 :$$cMálaga, Spain) 001437084 24510 $$aRecent advances in numerical methods for hyperbolic PDE systems :$$bNumHyp 2019 /$$cMaría Luz Muñoz-Ruiz, Carlos Parés, Giovanni Russo, editors. 001437084 2463_ $$aNumHyp 2019 001437084 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2021] 001437084 300__ $$a1 online resource (x, 269 pages) :$$billustrations (some color) 001437084 336__ $$atext$$btxt$$2rdacontent 001437084 337__ $$acomputer$$bc$$2rdamedia 001437084 338__ $$aonline resource$$bcr$$2rdacarrier 001437084 347__ $$atext file 001437084 347__ $$bPDF 001437084 4901_ $$aSEMA SIMAI Springer series,$$x2199-3041 ;$$vvolume 28 001437084 500__ $$aIncludes index. 001437084 5050_ $$aPart I: Numerical methods for general problems -- 1 J.M. Gallardo et al., Incomplete Riemann solvers based on functional approximations to the absolute value function -- 2 M. Frank et al., Entropy-based methods for uncertainty quantification of hyperbolic conservation laws -- 3 I. Gomez Bueno et al., Well-balanced reconstruction operator for systems of balance laws: numerical implementation -- 4 V. Michel-Dansac and A. Thomann, On high-precision L?-stable IMEX schemes for scalar hyperbolic multi-scale Equations -- Part II: Numerical methods for speci_c problems -- 5 D. Grapsas et al., A staggered preassure correction numerical scheme to compute a travellimg reactive interface in a partially premixed mixture -- 6 M. Lukacova et al., New Invariant Domain Preserving Finite Volume Schemes for Compressible Flows -- 7 S. Jöns et al., Recent Advances and Complex Applications of the Compressible Ghost-Fluid Method -- 8 J. P. Berberich and C. Klingenberg, Entropy Stable Numerical Fluxes for Compressible Euler Equations which are Suitable for All Mach Numbers -- 9 P. Poullet et al., Residual based method for sediment transport -- Part III: New ow models -- 10 B. B. Dhia et al., Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows -- 11 M. Ali Debyaoui and M. Ersoy, A Generalised Serre-Green-Naghdi equations for variable rectangular open channel hydraulics and its finite volume approximation. 001437084 506__ $$aAccess limited to authorized users. 001437084 520__ $$aThe present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Málaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation. 001437084 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 4, 2021). 001437084 650_0 $$aDifferential equations, Hyperbolic$$vCongresses. 001437084 650_6 $$aÉquations différentielles hyperboliques$$vCongrès. 001437084 655_7 $$aConference papers and proceedings.$$2fast$$0(OCoLC)fst01423772 001437084 655_7 $$aConference papers and proceedings.$$2lcgft 001437084 655_7 $$aActes de congrès.$$2rvmgf 001437084 655_7 $$aCongressos.$$2thub 001437084 655_7 $$aLlibres electrònics.$$2thub 001437084 655_0 $$aElectronic books. 001437084 7001_ $$aMuñoz-Ruiz, María Luz,$$eeditor. 001437084 7001_ $$aParés, Carlos,$$eeditor. 001437084 7001_ $$aRusso, Giovanni$$c(College teacher),$$eeditor. 001437084 77608 $$iPrint version: $$z3030728498$$z9783030728496$$w(OCoLC)1240493075 001437084 830_0 $$aSEMA SIMAI Springer series ;$$vv. 28.$$x2199-3041 001437084 852__ $$bebk 001437084 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-72850-2$$zOnline Access$$91397441.1 001437084 909CO $$ooai:library.usi.edu:1437084$$pGLOBAL_SET 001437084 980__ $$aBIB 001437084 980__ $$aEBOOK 001437084 982__ $$aEbook 001437084 983__ $$aOnline 001437084 994__ $$a92$$bISE