001437342 000__ 03082cam\a2200541\i\4500 001437342 001__ 1437342 001437342 003__ OCoLC 001437342 005__ 20230309004143.0 001437342 006__ m\\\\\o\\d\\\\\\\\ 001437342 007__ cr\un\nnnunnun 001437342 008__ 210615s2021\\\\sz\a\\\\ob\\\\001\0\eng\d 001437342 019__ $$a1257084281$$a1262379465 001437342 020__ $$a9783030671112$$q(electronic bk.) 001437342 020__ $$a3030671119$$q(electronic bk.) 001437342 020__ $$z9783030671105 001437342 020__ $$z3030671100 001437342 0247_ $$a10.1007/978-3-030-67111-2$$2doi 001437342 035__ $$aSP(OCoLC)1256541830 001437342 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dOCLCO$$dEBLCP$$dUKAHL$$dOCLCQ$$dCOM$$dOCLCO$$dOCLCQ 001437342 049__ $$aISEA 001437342 050_4 $$aQH623$$b.B88 2021 001437342 08204 $$a571.601/5118$$223 001437342 1001_ $$aButtenschön, Andreas,$$eauthor. 001437342 24510 $$aNon-local cell adhesion models :$$bsymmetries and bifurcations in 1-D /$$cAndreas Buttenschön, Thomas Hillen. 001437342 264_1 $$aCham :$$bSpringer,$$c[2021] 001437342 264_4 $$c©2021 001437342 300__ $$a1 online resource :$$billustrations (some color) 001437342 336__ $$atext$$btxt$$2rdacontent 001437342 337__ $$acomputer$$bc$$2rdamedia 001437342 338__ $$aonline resource$$bcr$$2rdacarrier 001437342 4901_ $$aCMS/CAIMS books in mathematics,$$x2730-650X 001437342 504__ $$aIncludes bibliographical references and index. 001437342 5050_ $$aIntroduction -- Preliminaries -- The Periodic Problem -- Basic Properties -- Local Bifurcation -- Global Bifurcation -- Non-local Equations with Boundary Conditions -- No-flux Boundary Conditions -- Discussion and future directions. 001437342 506__ $$aAccess limited to authorized users. 001437342 520__ $$aThis monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level. 001437342 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 23, 2021). 001437342 650_0 $$aCell adhesion$$xMathematical models. 001437342 650_6 $$aCellules$$xAdhésivité$$xModèles mathématiques. 001437342 655_0 $$aElectronic books. 001437342 7001_ $$aHillen, Thomas,$$d1966-$$eauthor. 001437342 77608 $$iPrint version: $$z3030671100$$z9783030671105$$w(OCoLC)1225624414 001437342 830_0 $$aCMS/CAIMS books in mathematics.$$x2730-650X 001437342 852__ $$bebk 001437342 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-67111-2$$zOnline Access$$91397441.1 001437342 909CO $$ooai:library.usi.edu:1437342$$pGLOBAL_SET 001437342 980__ $$aBIB 001437342 980__ $$aEBOOK 001437342 982__ $$aEbook 001437342 983__ $$aOnline 001437342 994__ $$a92$$bISE