001437414 000__ 03160cam\a2200601\i\4500
001437414 001__ 1437414
001437414 003__ OCoLC
001437414 005__ 20230309004147.0
001437414 006__ m\\\\\o\\d\\\\\\\\
001437414 007__ cr\un\nnnunnun
001437414 008__ 210617s2021\\\\sz\a\\\\ob\\\\001\0\eng\d
001437414 019__ $$a1235415423$$a1257273618$$a1262381370
001437414 020__ $$a9783030704407$$q(electronic bk.)
001437414 020__ $$a3030704408$$q(electronic bk.)
001437414 020__ $$z9783030704391
001437414 020__ $$z3030704394
001437414 0247_ $$a10.1007/978-3-030-70440-7$$2doi
001437414 035__ $$aSP(OCoLC)1256804348
001437414 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dOCLCO$$dEBLCP$$dUX0$$dBDX$$dOCLCF$$dUKAHL$$dAAA$$dOCLCQ$$dCOM$$dOCLCO$$dOCLCQ
001437414 049__ $$aISEA
001437414 050_4 $$aQA612.3$$b.A73 2021
001437414 08204 $$a514/.23$$223
001437414 1001_ $$aArabia, Alberto,$$eauthor.
001437414 24510 $$aEquivariant Poincaré duality on G-manifolds :$$bequivariant Gysin morphism and equivariant Euler classes /$$cAlberto Arabia.
001437414 264_1 $$aCham :$$bSpringer,$$c[2021]
001437414 264_4 $$c©2021
001437414 300__ $$a1 online resource :$$billustrations
001437414 336__ $$atext$$btxt$$2rdacontent
001437414 337__ $$acomputer$$bc$$2rdamedia
001437414 338__ $$aonline resource$$bcr$$2rdacarrier
001437414 347__ $$atext file
001437414 347__ $$bPDF
001437414 4901_ $$aLecture notes in mathematics,$$x0075-8434 ;$$vvolume 2288
001437414 504__ $$aIncludes bibliographical references and index.
001437414 5050_ $$aIntroduction -- Nonequivariant Background -- Poincaré Duality Relative to a Base Space -- Equivariant Background -- Equivariant Poincaré Duality -- Equivariant Gysin Morphism and Euler Classes -- Localization -- Changing the Coefficients Field.
001437414 506__ $$aAccess limited to authorized users.
001437414 520__ $$aThis book carefully presents a unified treatment of equivariant Poincaré duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.
001437414 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 17, 2021).
001437414 650_0 $$aPoincaré series.
001437414 650_0 $$aDuality theory (Mathematics)
001437414 650_0 $$aCohomology operations.
001437414 650_6 $$aSéries de Poincaré.
001437414 650_6 $$aPrincipe de dualité (Mathématiques)
001437414 650_6 $$aOpérations cohomologiques.
001437414 655_0 $$aElectronic books.
001437414 77608 $$iPrint version: $$z3030704394$$z9783030704391$$w(OCoLC)1235415423
001437414 830_0 $$aLecture notes in mathematics (Springer-Verlag) ;$$v2288.$$x0075-8434
001437414 852__ $$bebk
001437414 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-70440-7$$zOnline Access$$91397441.1
001437414 909CO $$ooai:library.usi.edu:1437414$$pGLOBAL_SET
001437414 980__ $$aBIB
001437414 980__ $$aEBOOK
001437414 982__ $$aEbook
001437414 983__ $$aOnline
001437414 994__ $$a92$$bISE