Linked e-resources
Details
Table of Contents
Introduction
1. Surface Preliminaries
2. Surfaces
3. The Euler Characteristic and Identification Spaces
4. Classification Theorem of Compact Surfaces
5. Introduction to Group Theory
6. Structure of Groups
7. Cosets, Normal Subgroups, and Quotient Groups
8. The Fundamental Group
9. Computing the Fundamental Group
10. Tools for Fundamental Groups
11. Applications of Fundamental Groups
12. The Seifert-Van Kampen Theorem
13. Introduction to Homology
14. The Mayer-Vietoris Sequence
A. Topological Notions
Bibliography
Index.
1. Surface Preliminaries
2. Surfaces
3. The Euler Characteristic and Identification Spaces
4. Classification Theorem of Compact Surfaces
5. Introduction to Group Theory
6. Structure of Groups
7. Cosets, Normal Subgroups, and Quotient Groups
8. The Fundamental Group
9. Computing the Fundamental Group
10. Tools for Fundamental Groups
11. Applications of Fundamental Groups
12. The Seifert-Van Kampen Theorem
13. Introduction to Homology
14. The Mayer-Vietoris Sequence
A. Topological Notions
Bibliography
Index.