001437575 000__ 02878cam\a2200505\a\4500 001437575 001__ 1437575 001437575 003__ OCoLC 001437575 005__ 20230309004155.0 001437575 006__ m\\\\\o\\d\\\\\\\\ 001437575 007__ cr\un\nnnunnun 001437575 008__ 210625s2021\\\\sz\\\\\\ob\\\\001\0\eng\d 001437575 020__ $$a9783030726836$$q(electronic bk.) 001437575 020__ $$a3030726835$$q(electronic bk.) 001437575 020__ $$z3030726827 001437575 020__ $$z9783030726829 001437575 0247_ $$a10.1007/978-3-030-72683-6$$2doi 001437575 035__ $$aSP(OCoLC)1257549990 001437575 040__ $$aYDX$$beng$$epn$$cYDX$$dGW5XE$$dOCLCO$$dEBLCP$$dOCLCF$$dN$T$$dUKAHL$$dOCLCQ$$dCOM$$dOCLCO$$dOCLCQ 001437575 049__ $$aISEA 001437575 050_4 $$aQC174.17.S3 001437575 08204 $$a530.12/4$$223 001437575 1001_ $$aVeliev, Oktay. 001437575 24510 $$aNon-self-adjoint Schrödinger operator with a periodic potential/$$cOktay Veliev. 001437575 260__ $$aCham, Switzerland :$$bSpringer,$$c2021. 001437575 300__ $$a1 online resource 001437575 336__ $$atext$$btxt$$2rdacontent 001437575 337__ $$acomputer$$bc$$2rdamedia 001437575 338__ $$aonline resource$$bcr$$2rdacarrier 001437575 504__ $$aIncludes bibliographical references and index. 001437575 5050_ $$a1. Spectral Theory for the Schrödinger Operator with a Complex-Valued Periodic Potential -- 2. On the Special Potentials -- 3. On the Matheiu-Schrödinger Operator -- 4. PT-Symmetric Periodic Optical Potential -- Index. 001437575 506__ $$aAccess limited to authorized users. 001437575 520__ $$aThis book gives a complete spectral analysis of the non-self-adjoint Schrödinger operator with a periodic complex-valued potential. Building from the investigation of the spectrum and spectral singularities and construction of the spectral expansion for the non-self-adjoint Schrödinger operator, the book features a complete spectral analysis of the Mathieu-Schrödinger operator and the Schrödinger operator with a parity-time (PT)-symmetric periodic optical potential. There currently exists no general spectral theorem for non-self-adjoint operators; the approaches in this book thus open up new possibilities for spectral analysis of some of the most important operators used in non-Hermitian quantum mechanics and optics. Featuring detailed proofs and a comprehensive treatment of the subject matter, the book is ideally suited for graduate students at the intersection of physics and mathematics. 001437575 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed July 1, 2021). 001437575 650_0 $$aSchrödinger operator. 001437575 650_0 $$aSelfadjoint operators. 001437575 650_6 $$aOpérateur de Schrödinger. 001437575 650_6 $$aOpérateurs auto-adjoints. 001437575 655_0 $$aElectronic books. 001437575 77608 $$iPrint version:$$z3030726827$$z9783030726829$$w(OCoLC)1240494140 001437575 852__ $$bebk 001437575 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-72683-6$$zOnline Access$$91397441.1 001437575 909CO $$ooai:library.usi.edu:1437575$$pGLOBAL_SET 001437575 980__ $$aBIB 001437575 980__ $$aEBOOK 001437575 982__ $$aEbook 001437575 983__ $$aOnline 001437575 994__ $$a92$$bISE