001437681 000__ 03935cam\a2200553\i\4500 001437681 001__ 1437681 001437681 003__ OCoLC 001437681 005__ 20230309004227.0 001437681 006__ m\\\\\o\\d\\\\\\\\ 001437681 007__ cr\cn\nnnunnun 001437681 008__ 210630s2021\\\\sz\\\\\\ob\\\\001\0\eng\d 001437681 019__ $$a1260468781 001437681 020__ $$a9783030505707$$q(electronic bk.) 001437681 020__ $$a3030505707$$q(electronic bk.) 001437681 020__ $$z9783030505691$$q(print) 001437681 0247_ $$a10.1007/978-3-030-50570-7$$2doi 001437681 035__ $$aSP(OCoLC)1258117643 001437681 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dOCLCO$$dN$T$$dOCLCF$$dOCLCQ$$dOCLCO$$dOCLCQ 001437681 049__ $$aISEA 001437681 050_4 $$aQA614.58 001437681 08204 $$a514/.746$$223 001437681 1001_ $$aArtés, Joan C.,$$d1961-$$eauthor. 001437681 24510 $$aGeometric configurations of singularities of planar polynomial differential systems :$$ba global classification in the quadratic case /$$cJoan C. Artés, Jaume Llibre, Dana Schlomiuk, Nicolae Vulpe. 001437681 264_1 $$aCham, Switzerland :$$bBirkhäuser,$$c[2021] 001437681 300__ $$a1 online resource (xii, 699 pages) 001437681 336__ $$atext$$btxt$$2rdacontent 001437681 337__ $$acomputer$$bc$$2rdamedia 001437681 338__ $$aonline resource$$bcr$$2rdacarrier 001437681 504__ $$aIncludes bibliographical references and index. 001437681 5050_ $$aPart I -- Polynomial differential systems with emphasis on the quadratic ones -- 1 Introduction -- 2 Survey of results on quadratic differential systems -- 3 Singularities of polynomial differential systems -- 4 Invariants in mathematical classification problems -- 5 Invariant theory of planar polynomial vector fields -- 6 Main results on classifications of singularities in QS -- 7 Classifications of quadratic systems with special singularities -- Part II -- 8 QS with finite singularities of total multiplicity at most one -- 9 QS with finite singularities of total multiplicity two -- 10 QS with finite singularities of total multiplicity three -- 11 QS with finite singularities of total multiplicity four -- 12 Degenerate quadratic systems -- 13 Conclusions. 001437681 506__ $$aAccess limited to authorized users. 001437681 520__ $$aThis book addresses the global study of finite and infinite singularities of planar polynomial differential systems, with special emphasis on quadratic systems. While results covering the degenerate cases of singularities of quadratic systems have been published elsewhere, the proofs for the remaining harder cases were lengthier. This book covers all cases, with half of the content focusing on the last non-degenerate ones. The book contains the complete bifurcation diagram, in the 12-parameter space, of global geometrical configurations of singularities of quadratic systems. The authors' results provide - for the first time - global information on all singularities of quadratic systems in invariant form and their bifurcations. In addition, a link to a very helpful software package is included. With the help of this software, the study of the algebraic bifurcations becomes much more efficient and less time-consuming. Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph. D. students, and postdoctoral fellows. 001437681 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 30, 2021). 001437681 650_0 $$aSingularities (Mathematics) 001437681 650_0 $$aPolynomials. 001437681 650_0 $$aDifferential equations. 001437681 650_6 $$aSingularités (Mathématiques) 001437681 650_6 $$aPolynômes. 001437681 650_6 $$aÉquations différentielles. 001437681 655_0 $$aElectronic books. 001437681 7001_ $$aLlibre, Jaume,$$eauthor. 001437681 7001_ $$aSchlomiuk, Dana,$$eauthor. 001437681 7001_ $$aVulpe, Nicolae,$$eauthor. 001437681 852__ $$bebk 001437681 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-50570-7$$zOnline Access$$91397441.1 001437681 909CO $$ooai:library.usi.edu:1437681$$pGLOBAL_SET 001437681 980__ $$aBIB 001437681 980__ $$aEBOOK 001437681 982__ $$aEbook 001437681 983__ $$aOnline 001437681 994__ $$a92$$bISE