Linked e-resources
Details
Table of Contents
Intro
Preface
Contents
About the Authors
List of Figures
List of Tables
1 Introduction
1.1 Introduction
1.2 Basics of Parametric Inference
1.3 Basics of Asymptotic Inference
1.4 Introduction to R Software and Language
2 Consistency of an Estimator
2.1 Introduction
2.2 Consistency: Real Parameter Setup
2.3 Strong Consistency
2.4 Uniform Weak and Strong Consistency
2.5 Consistency: Vector Parameter Setup
2.6 Performance of a Consistent Estimator
2.7 Verification of Consistency Using R
2.8 Conceptual Exercises
2.9 Computational Exercises
3 Consistent and Asymptotically Normal Estimators
3.1 Introduction
3.2 CAN Estimator: Real Parameter Setup
3.3 CAN Estimator: Vector Parameter Setup
3.4 Verification of CAN Property Using R
3.5 Conceptual Exercises
3.6 Computational Exercises
4 CAN Estimators in Exponential and Cramér Families
4.1 Introduction
4.2 Exponential Family
4.3 Cramér Family
4.4 Iterative Procedures
4.5 Maximum Likelihood Estimation Using R
4.6 Conceptual Exercises
4.7 Computational Exercises
5 Large Sample Test Procedures
5.1 Introduction
5.2 Likelihood Ratio Test Procedure
5.3 Large Sample Tests Using R
5.4 Conceptual Exercises
5.5 Computational Exercises
6 Goodness of Fit Test and Tests for Contingency Tables
6.1 Introduction
6.2 Multinomial Distribution and Associated Tests
6.3 Goodness of Fit Test
6.4 Score Test and Wald's Test
6.5 Tests for Contingency Tables
6.6 Consistency of a Test Procedure
6.7 Large Sample Tests Using R
6.8 Conceptual Exercises
6.9 Computational Exercises
7 Solutions to Conceptual Exercises
7.1 Chapter 2
7.2 Chapter 3
7.3 Chapter 4
7.4 Chapter 5
7.5 Chapter 6
7.6 Multiple Choice Questions
7.6.1 Chapter 2: Consistency of an Estimator
7.6.2 Chapter 3: Consistent and Asymptotically Normal Estimators
7.6.3 Chapter 4: CAN Estimators in Exponential and Cramér Families
7.6.4 Chapter 5: Large Sample Test Procedures
7.6.5 Chapter 6: Goodness of Fit Test and Tests for Contingency Tables
Appendix *-1.6pcIndex
Index
Preface
Contents
About the Authors
List of Figures
List of Tables
1 Introduction
1.1 Introduction
1.2 Basics of Parametric Inference
1.3 Basics of Asymptotic Inference
1.4 Introduction to R Software and Language
2 Consistency of an Estimator
2.1 Introduction
2.2 Consistency: Real Parameter Setup
2.3 Strong Consistency
2.4 Uniform Weak and Strong Consistency
2.5 Consistency: Vector Parameter Setup
2.6 Performance of a Consistent Estimator
2.7 Verification of Consistency Using R
2.8 Conceptual Exercises
2.9 Computational Exercises
3 Consistent and Asymptotically Normal Estimators
3.1 Introduction
3.2 CAN Estimator: Real Parameter Setup
3.3 CAN Estimator: Vector Parameter Setup
3.4 Verification of CAN Property Using R
3.5 Conceptual Exercises
3.6 Computational Exercises
4 CAN Estimators in Exponential and Cramér Families
4.1 Introduction
4.2 Exponential Family
4.3 Cramér Family
4.4 Iterative Procedures
4.5 Maximum Likelihood Estimation Using R
4.6 Conceptual Exercises
4.7 Computational Exercises
5 Large Sample Test Procedures
5.1 Introduction
5.2 Likelihood Ratio Test Procedure
5.3 Large Sample Tests Using R
5.4 Conceptual Exercises
5.5 Computational Exercises
6 Goodness of Fit Test and Tests for Contingency Tables
6.1 Introduction
6.2 Multinomial Distribution and Associated Tests
6.3 Goodness of Fit Test
6.4 Score Test and Wald's Test
6.5 Tests for Contingency Tables
6.6 Consistency of a Test Procedure
6.7 Large Sample Tests Using R
6.8 Conceptual Exercises
6.9 Computational Exercises
7 Solutions to Conceptual Exercises
7.1 Chapter 2
7.2 Chapter 3
7.3 Chapter 4
7.4 Chapter 5
7.5 Chapter 6
7.6 Multiple Choice Questions
7.6.1 Chapter 2: Consistency of an Estimator
7.6.2 Chapter 3: Consistent and Asymptotically Normal Estimators
7.6.3 Chapter 4: CAN Estimators in Exponential and Cramér Families
7.6.4 Chapter 5: Large Sample Test Procedures
7.6.5 Chapter 6: Goodness of Fit Test and Tests for Contingency Tables
Appendix *-1.6pcIndex
Index