Linked e-resources
Details
Table of Contents
Part I Basic Theory in M-Polyfolds
1 Sc-Calculus
2 Retracts
3 Basic Sc-Fredholm Theory
4 Manifolds and Strong Retracts
5 Fredholm Package for M-Polyfolds
6 Orientations
Part II Ep-Groupoids
7 Ep-Groupoids
8 Bundles and Covering Functors
9 Branched Ep+-Subgroupoids
10 Equivalences and Localization
11 Geometry up to Equivalences
Part III Fredholm Theory in Ep-Groupoids
12 Sc-Fredholm Sections
13 Sc+-Multisections
14 Extensions of Sc+-Multisections
15 Transversality and Invariants
16 Polyfolds
Part IV Fredholm Theory in Groupoidal Categories
17 Polyfold Theory for Categories
18 Fredholm Theory in Polyfolds
19 General Constructions
A Construction Cheatsheet
References
Index.
1 Sc-Calculus
2 Retracts
3 Basic Sc-Fredholm Theory
4 Manifolds and Strong Retracts
5 Fredholm Package for M-Polyfolds
6 Orientations
Part II Ep-Groupoids
7 Ep-Groupoids
8 Bundles and Covering Functors
9 Branched Ep+-Subgroupoids
10 Equivalences and Localization
11 Geometry up to Equivalences
Part III Fredholm Theory in Ep-Groupoids
12 Sc-Fredholm Sections
13 Sc+-Multisections
14 Extensions of Sc+-Multisections
15 Transversality and Invariants
16 Polyfolds
Part IV Fredholm Theory in Groupoidal Categories
17 Polyfold Theory for Categories
18 Fredholm Theory in Polyfolds
19 General Constructions
A Construction Cheatsheet
References
Index.