001438421 000__ 05793cam\a2200637\a\4500 001438421 001__ 1438421 001438421 003__ OCoLC 001438421 005__ 20230309004304.0 001438421 006__ m\\\\\o\\d\\\\\\\\ 001438421 007__ cr\un\nnnunnun 001438421 008__ 210725s2021\\\\sz\\\\\\o\\\\\001\0\eng\d 001438421 019__ $$a1262372052$$a1268574256$$a1284943195 001438421 020__ $$a9783030736064$$q(electronic bk.) 001438421 020__ $$a3030736067$$q(electronic bk.) 001438421 020__ $$z3030736059 001438421 020__ $$z9783030736057 001438421 0247_ $$a10.1007/978-3-030-73606-4$$2doi 001438421 035__ $$aSP(OCoLC)1261379654 001438421 040__ $$aYDX$$beng$$epn$$cYDX$$dEBLCP$$dGW5XE$$dOCLCO$$dOCLCF$$dN$T$$dUKAHL$$dDKU$$dOCLCQ$$dOCLCO$$dOCLCQ 001438421 049__ $$aISEA 001438421 050_4 $$aQK754 001438421 08204 $$a581.7/88$$223 001438421 24500 $$aNanobiotechnology :$$bmitigation of abiotic stress in plants /$$cJameel M. Al-Khayri, Mohammad Israil Ansari, Akhilesh Kumar Singh, editors. 001438421 260__ $$aCham, Switzerland :$$bSpringer,$$c2021. 001438421 300__ $$a1 online resource 001438421 336__ $$atext$$btxt$$2rdacontent 001438421 337__ $$acomputer$$bc$$2rdamedia 001438421 338__ $$aonline resource$$bcr$$2rdacarrier 001438421 347__ $$atext file 001438421 347__ $$bPDF 001438421 500__ $$aIncludes index. 001438421 5050_ $$aIntro -- Preface -- Contents -- Editors and Contributors -- 1 Abiotic Stress in Plants: Socio-Economic Consequences and Crops Responses -- 1.1 Introduction -- 1.2 Socio-Economic Consequences of Abiotic Stress on Crop Production -- 1.3 Crops Response to Abiotic Stress -- 1.3.1 Growth and Productivity -- 1.3.2 Germination and Early Seedling Stages -- 1.3.3 Vegetative and Reproductive Stages -- 1.4 Crop Water Relations -- 1.4.1 Water Stress -- 1.4.2 Extreme Temperatures -- 1.4.3 Salinity -- 1.4.4 Heavy Metal -- 1.5 The Effect of Abiotic Stressors on Photosynthesis Pigments and Apparatus 001438421 5058_ $$a1.5.1 Water Stress -- 1.5.2 Extreme Temperatures -- 1.5.3 Salinity -- 1.5.4 Heavy Metals -- 1.6 Conclusion and Future Prospects -- References -- 2 Plant Abiotic Stress Tolerance Mechanisms -- 2.1 Introduction -- 2.1.1 Morphological Flexibility Conferring Abiotic Stress Tolerance -- 2.2 Positive Physiological Modification to Tackle Abiotic Stress -- 2.2.1 Antioxidants -- 2.2.2 Osmotic Adjustment -- 2.2.3 Molecular Strategies -- 2.3 Conclusion and Future Perspective -- References -- 3 Biotechnology Strategies to Combat Plant Abiotic Stress -- 3.1 Introduction 001438421 5058_ $$a3.2 Genetic Engineering Strategies for Resistance to Abiotic Stresses -- 3.2.1 Metabolite Engineering for Improving Abiotic Stress Tolerance -- 3.2.2 Genetic Engineering of Stress Responsive Genes and Transcription Factors -- 3.3 Tissue Culture Techniques -- 3.3.1 Somaclonal Variation and In Vitro Mutagenesis -- 3.3.2 In Vitro Selection for Abiotic Stress Tolerant Plants -- 3.4 Gene Editing Tools for Improving Stress Resistance in Plants -- 3.4.1 Zinc Finger Nucleases (ZFNs) -- 3.4.2 Transcription Activator-Like Effector Nucleases (TALENs) 001438421 5058_ $$a3.4.3 Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9) -- 3.5 Conclusion and Prospects -- References -- 4 Nanomaterials Fundamentals: Classification, Synthesis and Characterization -- 4.1 Introduction -- 4.2 Nanomaterials -- 4.3 Classification of Nanomaterials -- 4.4 Quantum Effects -- 4.5 Unique Properties of Nanomaterials -- 4.5.1 Physical Properties -- 4.5.2 Optical Properties -- 4.5.3 Chemical Properties -- 4.5.4 Electrical Properties -- 4.5.5 Magnetic Properties -- 4.5.6 Mechanical Properties -- 4.6 Synthesis Methods of Nanomaterials 001438421 5058_ $$a4.6.1 Physical Methods for Synthesis Nanomaterials -- 4.6.2 Chemical Methods for Synthesis Nanomaterials -- 4.6.3 Green Methods for Synthesis Nanomaterials -- 4.7 Characterization of Nanoparticles -- 4.7.1 X-Ray Diffraction (XRD) -- 4.7.2 Transmission Electron Microscopy (TEM) -- 4.7.3 Scanning Electron Microscope (SEM) -- 4.7.4 Energy Dispersion Spectroscopy -- 4.7.5 Fourier Transform Infrared (FTIR) Spectrometer -- 4.7.6 Ultraviolet-Visible (UV/Vis) Spectroscopy -- 4.8 Conclusion and Prospects -- References -- 5 Nanotechnology in Agriculture -- 5.1 Introduction 001438421 506__ $$aAccess limited to authorized users. 001438421 520__ $$aThis book provides up-to-date knowledge of the promising field of Nanobiotechnology with emphasis on the mitigation approaches to combat plant abiotic stress factors, including drought, salinity, waterlog, temperature extremes, mineral nutrients, and heavy metals. These factors adversely affect the growth as well as yield of crop plants worldwide, especially under the global climate change. Nanobiotechnology is viewed to revolutionize crop productivity in future. The chapters discuss the status and prospects of this cutting-edge technology toward understanding tolerance mechanisms, including signaling molecules and enzymes regulation in addition to the applications of Nanobiotechnology to combat individual abiotic stress factors. 001438421 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed August 4, 2021). 001438421 650_0 $$aPlants$$xEffect of stress on$$xTechnological innovations. 001438421 650_0 $$aCrops$$xEffect of stress on$$xTechnological innovations. 001438421 650_0 $$aNanobiotechnology. 001438421 650_6 $$aPlantes$$xEffets du stress sur$$xInnovations. 001438421 650_6 $$aCultures$$xEffets du stress sur$$xInnovations. 001438421 650_6 $$aNanobiotechnologie. 001438421 655_0 $$aElectronic books. 001438421 7001_ $$aAl-Khayri, Jameel M.,$$eeditor. 001438421 7001_ $$aAnsari, Mohammad Israil,$$eeditor. 001438421 7001_ $$aSingh, Akhilesh Kumar,$$d1963-$$eeditor. 001438421 77608 $$iPrint version:$$z3030736059$$z9783030736057$$w(OCoLC)1241244507 001438421 852__ $$bebk 001438421 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-73606-4$$zOnline Access$$91397441.1 001438421 909CO $$ooai:library.usi.edu:1438421$$pGLOBAL_SET 001438421 980__ $$aBIB 001438421 980__ $$aEBOOK 001438421 982__ $$aEbook 001438421 983__ $$aOnline 001438421 994__ $$a92$$bISE