001438968 000__ 03514cam\a2200541\i\4500 001438968 001__ 1438968 001438968 003__ OCoLC 001438968 005__ 20230309004403.0 001438968 006__ m\\\\\o\\d\\\\\\\\ 001438968 007__ cr\cn\nnnunnun 001438968 008__ 210818s2021\\\\sz\a\\\\ob\\\\000\0\eng\d 001438968 019__ $$a1315575911 001438968 020__ $$a9783030751869$$q(electronic bk.) 001438968 020__ $$a3030751864$$q(electronic bk.) 001438968 020__ $$z9783030751852$$q(print) 001438968 0247_ $$a10.1007/978-3-030-75186-9$$2doi 001438968 035__ $$aSP(OCoLC)1264220140 001438968 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dGW5XE$$dOCLCO$$dOCLCF$$dOCLCQ$$dN$T$$dOCLCO$$dOCLCQ 001438968 049__ $$aISEA 001438968 050_4 $$aQC20 001438968 08204 $$a530.15$$223 001438968 1001_ $$aKunze, Markus,$$d1967-$$eauthor. 001438968 24512 $$aA Birman-Schwinger principle in galactic dynamics /$$cMarkus Kunze. 001438968 264_1 $$aCham, Switzerland :$$bBirkhäuser,$$c2021. 001438968 300__ $$a1 online resource (x, 206 pages) :$$billustrations (some color) 001438968 336__ $$atext$$btxt$$2rdacontent 001438968 337__ $$acomputer$$bc$$2rdamedia 001438968 338__ $$aonline resource$$bcr$$2rdacarrier 001438968 4901_ $$aProgress in mathematical physics,$$x2197-1846 ;$$vvolume 77 001438968 504__ $$aIncludes bibliographical references. 001438968 5050_ $$aPreface -- Introduction -- The Antonov Stability Estimate -- On the Period Function $T_1$ -- A Birman-Schwinger Type Operator -- Relation to the Guo-Lin Operator -- Invariances -- Appendix I: Spherical Symmetry and Action-Angle Variables -- Appendix II: Function Spaces and Operators -- Appendix III: An Evolution Equation -- Appendix IV: On Kato-Rellich Perturbation Theory. 001438968 506__ $$aAccess limited to authorized users. 001438968 520__ $$aThis monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics. The opening chapters lay the framework for the main result through detailed treatments of nonrelativistic galactic dynamics and the Vlasov-Poisson system, the Antonov stability estimate, and the period function $T_1$. Then, as the main application, the Birman-Schwinger type principle is used to characterize in which cases the "best constant" in the Antonov stability estimate is attained. The final two chapters consider the relation to the Guo-Lin operator and invariance properties for the Vlasov-Poisson system, respectively. Several appendices are also included that cover necessary background material, such as spherically symmetric models, action-angle variables, relevant function spaces and operators, and some aspects of Kato-Rellich perturbation theory. A Birman-Schwinger Principle in Galactic Dynamics will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and applied mathematics 001438968 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed August 18, 2021). 001438968 650_0 $$aMathematical physics. 001438968 650_0 $$aQuantum theory$$xMathematics. 001438968 650_0 $$aGalactic dynamics. 001438968 650_6 $$aPhysique mathématique. 001438968 650_6 $$aThéorie quantique$$xMathématiques. 001438968 650_6 $$aDynamique galactique. 001438968 655_0 $$aElectronic books. 001438968 830_0 $$aProgress in mathematical physics ;$$vv. 77.$$x2197-1846 001438968 852__ $$bebk 001438968 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-75186-9$$zOnline Access$$91397441.1 001438968 909CO $$ooai:library.usi.edu:1438968$$pGLOBAL_SET 001438968 980__ $$aBIB 001438968 980__ $$aEBOOK 001438968 982__ $$aEbook 001438968 983__ $$aOnline 001438968 994__ $$a92$$bISE