001439646 000__ 08893cam\a2200721\i\4500 001439646 001__ 1439646 001439646 003__ OCoLC 001439646 005__ 20230309004512.0 001439646 006__ m\\\\\o\\d\\\\\\\\ 001439646 007__ cr\cn\nnnunnun 001439646 008__ 210916s2021\\\\sz\a\\\\o\\\\\101\0\eng\d 001439646 019__ $$a1268574193 001439646 020__ $$a9783030863654$$q(electronic bk.) 001439646 020__ $$a3030863654$$q(electronic bk.) 001439646 020__ $$z9783030863647$$q(print) 001439646 0247_ $$a10.1007/978-3-030-86365-4$$2doi 001439646 035__ $$aSP(OCoLC)1268261038 001439646 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dOCLCO$$dDKU$$dEBLCP$$dOCLCF$$dN$T$$dOCLCQ$$dOCLCO$$dOCLCQ$$dCOM$$dOCLCO$$dOCLCQ 001439646 049__ $$aISEA 001439646 050_4 $$aQA76.87 001439646 08204 $$a006.32$$223 001439646 1112_ $$aInternational Conference on Artificial Neural Networks (European Neural Network Society)$$n(30th :$$d2021 :$$cOnline) 001439646 24510 $$aArtificial neural networks and machine learning -- ICANN 2021 :$$b30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14-17, 2021, Proceedings.$$nPart III /$$cIgor Farkaš, Paolo Masulli, Sebastian Otte, Stefan Wermter (eds.). 001439646 2463_ $$aICANN 2021 001439646 264_1 $$aCham, Switzerland :$$bSpringer,$$c2021. 001439646 300__ $$a1 online resource (xxiv, 697 pages) :$$billustrations (some color) 001439646 336__ $$atext$$btxt$$2rdacontent 001439646 337__ $$acomputer$$bc$$2rdamedia 001439646 338__ $$aonline resource$$bcr$$2rdacarrier 001439646 347__ $$atext file 001439646 347__ $$bPDF 001439646 4901_ $$aLecture notes in computer science ;$$v12893 001439646 4901_ $$aLNCS sublibrary, SL 1, Theoretical computer science and general issues 001439646 500__ $$a"This year, due to the still unresolved pandemic, the Organizing Committee, together with the Executive Committee of ENNS decided to organize ICANN 2021 online ..."--Preface 001439646 500__ $$aIncludes author index. 001439646 5050_ $$aGenerative neural networks -- Binding and Perspective Taking as Inference in a Generative Neural Network Model -- Advances in Password Recovery using Generative Deep Learning Techniques -- o 0886 -- Dilated Residual Aggregation Network for Text-guided Image Manipulation -- Denoising AutoEncoder based Delete and Generate Approach for Text Style Transfer -- GUIS2Code: A Computer Vision Tool to Generate Code Automatically from Graphical User Interface Sketches -- Generating Math Word Problems from Equations with Topic Consistency Maintaining and Commonsense Enforcement -- Generative properties of Universal Bidirectional Activation-based Learning -- Graph neural networks I -- Joint Graph Contextualized Network for Sequential Recommendation -- Relevance-Aware Q-matrix Calibration for Knowledge Tracing -- LGACN: A Light Graph Adaptive Convolution Network for Collaborative Filtering -- HawkEye: Cross-Platform Malware Detection with Representation Learning on Graphs -- An Empirical Study of the Expressiveness of Graph Kernels and Graph Neural Networks -- Multi-resolution Graph Neural Networks for PDE approximation -- Link Prediction on Knowledge Graph by Rotation Embedding on the Hyperplane in the Complex Vector Space -- Graph neural networks II -- Contextualise Entities and Relations: An Interaction Method for Knowledge Graph Completion -- Civil Unrest Event Forecasting Using Graphical and Sequential Neural Networks -- Parameterized Hypercomplex Graph Neural Networks for Graph Classification -- Feature Interaction Based Graph Convolutional Networks For Image-text Retrieval -- Generalizing Message Passing Neural Networks to Heterophily using Position Information -- Local and Non-local Context Graph Convolutional Networks for Skeleton-based Action Recognition.-STGATP: A Spatio-temporal Graph Attention Network for Long-term Traffic Prediction -- Hierarchical and ensemble models -- Integrating N-Gram Features into Pre-Trained Model: A Novel Ensemble Model for Multi-Target Stance Detection -- Hierarchical Ensemble for Multi-view Clustering -- Structure-Aware Multi-Scale Hierarchical Graph Convolutional Network for Skeleton Action Recognition -- Learning Hierarchical Reasoning for Text-based Visual Question Answering -- Hierarchical Deep Gaussian Processes Latent Variable Model via Expectation Propagation -- Adaptive Consensus-Based Ensemble for Improved Deep Learning Inference Cost -- Human pose estimation -- Multi-Branch Network for Small Human Pose Estimation -- PNO: Personalized Network Optimization for Human Pose and Shape Reconstruction -- JointPose: Jointly Optimizing Evolutionary Data Augmentation and Prediction Neural Network for 3D Human Pose Estimation -- DeepRehab: Real Time Pose Estimation on the Edge for Knee Injury Rehabilitation -- Image processing -- Subspace constraint for Single Image Super-Resolution -- Towards Fine-Grained Control over Latent Space for Unpaired Image-to-Image Translation -- FMSNet: Underwater Image Restoration by Learning from a Synthesized Dataset -- Towards Measuring Bias in Image Classification -- Towards Image Retrieval with Noisy Labels via Non-deterministic Features -- Image segmentation -- Improving Visual Question Answering by Semantic Segmentation -- Weakly Supervised Semantic Segmentation with Patch-Based Metric Learning Enhancement -- ComBiNet: Compact Convolutional Bayesian Neural Network for Image Segmentation -- Depth Mapping Hybrid Deep Learning Method for Optic Disc and Cup Segmentation on Stereoscopic Ocular Fundus -- RATS: Robust Automated Tracking and Segmentation of Similar Instances -- Knowledge distillation -- Data Diversification Revisited: Why Does It Work? -- A Generalized Meta-Loss Function for Distillation Based Learning Using Privileged Information for Classification and Regression -- Empirical Study of Data-Free Iterative Knowledge Distillation -- Adversarial Variational Knowledge Distillation -- Extract then Distill: Efficient and Effective Task-Agnostic BERT Distillation -- Medical image processing -- Semi-supervised Learning based Right Ventricle Segmentation Using Deep Convolutional Boltzmann Machine Shape Model -- Improved U-Net for Plaque Segmentation of Intracoronary Optical Coherence Tomography Images -- Approximated Masked Global Context Network for Skin Lesion Segmentation -- DSNet: Dynamic Selection Network for Biomedical Image Segmentation -- Computational Approach to Identifying Contrast-Driven Retinal Ganglion Cells -- Radiological Identification of Hip Joint Centers from X-ray Images Using Fast Deep Stacked Network and Dynamic Registration Graph -- A Two-Branch Neural Network for Non-Small-Cell Lung Cancer Classification and Segmentation -- Uncertainty Quantification and Estimation in Medical Image Classification -- Labeling Chest X-Ray Reports Using Deep Learning. 001439646 506__ $$aAccess limited to authorized users. 001439646 520__ $$aThe proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes. In this volume, the papers focus on topics such as generative neural networks, graph neural networks, hierarchical and ensemble models, human pose estimation, image processing, image segmentation, knowledge distillation, and medical image processing. *The conference was held online 2021 due to the COVID-19 pandemic. 001439646 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed September 16, 2021). 001439646 650_0 $$aNeural networks (Computer science)$$vCongresses. 001439646 650_0 $$aMachine learning$$vCongresses. 001439646 650_0 $$aArtificial intelligence$$vCongresses. 001439646 650_6 $$aRéseaux neuronaux (Informatique)$$vCongrès. 001439646 650_6 $$aApprentissage automatique$$vCongrès. 001439646 650_6 $$aIntelligence artificielle$$vCongrès. 001439646 655_7 $$aConference papers and proceedings.$$2fast$$0(OCoLC)fst01423772 001439646 655_7 $$aConference papers and proceedings.$$2lcgft 001439646 655_7 $$aActes de congrès.$$2rvmgf 001439646 655_0 $$aElectronic books. 001439646 7001_ $$aFarkaš, Igor,$$eeditor.$$0(orcid)0000-0003-3503-2080$$1https://orcid.org/0000-0003-3503-2080 001439646 7001_ $$aMasulli, Paolo,$$eeditor$$1https://orcid.org/0000-0002-1389-3894 001439646 7001_ $$aOtte, Sebastian,$$eeditor$$0(orcid)0000-0002-0305-0463$$1https://orcid.org/0000-0002-0305-0463 001439646 7001_ $$aWermter, Stefan,$$eeditor$$1https://orcid.org/0000-0003-1343-4775 001439646 77608 $$iPrint version:$$z9783030863647 001439646 77608 $$iPrint version:$$z9783030863661 001439646 830_0 $$aLecture notes in computer science ;$$v12893. 001439646 830_0 $$aLNCS sublibrary.$$nSL 1,$$pTheoretical computer science and general issues. 001439646 852__ $$bebk 001439646 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-86365-4$$zOnline Access$$91397441.1 001439646 909CO $$ooai:library.usi.edu:1439646$$pGLOBAL_SET 001439646 980__ $$aBIB 001439646 980__ $$aEBOOK 001439646 982__ $$aEbook 001439646 983__ $$aOnline 001439646 994__ $$a92$$bISE