001439827 000__ 04367cam\a2200601\i\4500 001439827 001__ 1439827 001439827 003__ OCoLC 001439827 005__ 20230309004524.0 001439827 006__ m\\\\\o\\d\\\\\\\\ 001439827 007__ cr\un\nnnunnun 001439827 008__ 210923s2021\\\\sz\a\\\\ob\\\\000\0\eng\d 001439827 019__ $$a1272997593$$a1351841595 001439827 020__ $$a9783030700539$$q(electronic bk.) 001439827 020__ $$a3030700534$$q(electronic bk.) 001439827 020__ $$z9783030700522 001439827 020__ $$z3030700526 001439827 0247_ $$a10.1007/978-3-030-70053-9$$2doi 001439827 035__ $$aSP(OCoLC)1268983780 001439827 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCO$$dOCLCF$$dOCLCQ$$dCOM$$dOCLCO$$dN$T$$dOCLCQ 001439827 0411_ $$aeng$$hrus 001439827 049__ $$aISEA 001439827 050_4 $$aQA911$$b.D4613 2021eb 001439827 08204 $$a532/.05$$223/eng/20221128 001439827 1001_ $$aDenisova, I. V.,$$eauthor. 001439827 24010 $$aDvizhenie kapli v neszhimaemoy zhidkosti.$$lEnglish 001439827 24510 $$aMotion of a drop in an incompressible fluid /$$cI.V. Denisova, V.A. Solonnikov. 001439827 264_1 $$aCham :$$bBirkhäuser,$$c[2021] 001439827 264_4 $$c©2021 001439827 300__ $$a1 online resource :$$billustrations (some color) 001439827 336__ $$atext$$btxt$$2rdacontent 001439827 337__ $$acomputer$$bc$$2rdamedia 001439827 338__ $$aonline resource$$bcr$$2rdacarrier 001439827 4901_ $$aAdvances in mathematical fluid mechanics. Lecture notes in mathematical fluid mechanics,$$x2510-1382 001439827 504__ $$aIncludes bibliographical references. 001439827 5050_ $$aIntroduction -- A Model Problem with Plane Interface and with Positive Surface Tension Coefficient -- The Model Problem Without Surface Tension Forces -- A Linear Problem with Closed Interface Under Nonnegative Surface Tension -- Local Solvability of the Problem in Weighted Hölder Spaces -- Global Solvability in the Hölder Spaces for the Nonlinear Problem without Surface Tension -- Global Solvability of the Problem Including Capillary Forces. Case of the Hölder Spaces -- Thermocapillary Convection Problem -- Motion of Two Fluids in the Oberbeck - Boussinesq Approximation -- Local L2-solvability of the Problem with Nonnegative Coefficient of Surface Tension -- Global L2-solvability of the Problem without Surface Tension -- L2-Theory for Two-Phase Capillary Fluid. 001439827 506__ $$aAccess limited to authorized users. 001439827 520__ $$aThis mathematical monograph details the authors' results on solutions to problems governing the simultaneous motion of two incompressible fluids. Featuring a thorough investigation of the unsteady motion of one fluid in another, researchers will find this to be a valuable resource when studying non-coercive problems to which standard techniques cannot be applied. As authorities in the area, the authors offer valuable insight into this area of research, which they have helped pioneer. This volume will offer pathways to further research for those interested in the active field of free boundary problems in fluid mechanics, and specifically the two-phase problem for the Navier-Stokes equations. The authors' main focus is on the evolution of an isolated mass with and without surface tension on the free interface. Using the Lagrange and Hanzawa transformations, local well-posedness in the Hölder and Sobolev-Slobodeckij on L2 spaces is proven as well. Global well-posedness for small data is also proven, as is the well-posedness and stability of the motion of two phase fluid in a bounded domain. Motion of a Drop in an Incompressible Fluid will appeal to researchers and graduate students working in the fields of mathematical hydrodynamics, the analysis of partial differential equations, and related topics. 001439827 546__ $$aTranslated from Russian. 001439827 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 5, 2021). 001439827 650_0 $$aFluid dynamics. 001439827 650_0 $$aBoundary value problems. 001439827 650_6 $$aDynamique des fluides. 001439827 650_6 $$aProblèmes aux limites. 001439827 655_0 $$aElectronic books. 001439827 7001_ $$aSolonnikov, V. A.$$q(Vsevolod Alekseevich),$$eauthor. 001439827 77608 $$iPrint version: $$z3030700526$$z9783030700522$$w(OCoLC)1232273081 001439827 830_0 $$aAdvances in mathematical fluid mechanics.$$pLecture notes in mathematical fluid mechanics.$$x2510-1382 001439827 852__ $$bebk 001439827 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-70053-9$$zOnline Access$$91397441.1 001439827 909CO $$ooai:library.usi.edu:1439827$$pGLOBAL_SET 001439827 980__ $$aBIB 001439827 980__ $$aEBOOK 001439827 982__ $$aEbook 001439827 983__ $$aOnline 001439827 994__ $$a92$$bISE