001440219 000__ 03660cam\a2200613\i\4500 001440219 001__ 1440219 001440219 003__ OCoLC 001440219 005__ 20230309004549.0 001440219 006__ m\\\\\o\\d\\\\\\\\ 001440219 007__ cr\un\nnnunnun 001440219 008__ 211009s2021\\\\sz\a\\\\ob\\\\000\0\eng\d 001440219 019__ $$a1273981681$$a1274057890$$a1274125478$$a1287766218 001440219 020__ $$a9783030824587$$q(electronic bk.) 001440219 020__ $$a3030824586$$q(electronic bk.) 001440219 020__ $$z9783030824570 001440219 020__ $$z3030824578 001440219 0247_ $$a10.1007/978-3-030-82458-7$$2doi 001440219 035__ $$aSP(OCoLC)1273967004 001440219 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dDCT$$dOCLCO$$dOCLCQ$$dCOM$$dSFB$$dUKAHL$$dOCLCQ 001440219 049__ $$aISEA 001440219 050_4 $$aQA279$$b.P68 2021 001440219 08204 $$a519.5$$223 001440219 1001_ $$aPourmohamad, Tony,$$eauthor. 001440219 24510 $$aBayesian optimization with application to computer experiments /$$cTony Pourmohamad, Herbert K.H. Lee. 001440219 264_1 $$aCham :$$bSpringer,$$c[2021] 001440219 264_4 $$c©2021 001440219 300__ $$a1 online resource :$$billustrations (chiefly color) 001440219 336__ $$atext$$btxt$$2rdacontent 001440219 337__ $$acomputer$$bc$$2rdamedia 001440219 338__ $$aonline resource$$bcr$$2rdacarrier 001440219 347__ $$atext file 001440219 347__ $$bPDF 001440219 4901_ $$aSpringerBriefs in statistics 001440219 504__ $$aIncludes bibliographical references. 001440219 5050_ $$a1. Computer experiments -- 2. Surrogate models -- 3. Unconstrained optimization -- 4. Constrained optimization. 001440219 506__ $$aAccess limited to authorized users. 001440219 520__ $$aThis book introduces readers to Bayesian optimization, highlighting advances in the field and showcasing its successful applications to computer experiments. R code is available as online supplementary material for most included examples, so that readers can better comprehend and reproduce methods. Compact and accessible, the volume is broken down into four chapters. Chapter 1 introduces the reader to the topic of computer experiments; it includes a variety of examples across many industries. Chapter 2 focuses on the task of surrogate model building and contains a mix of several different surrogate models that are used in the computer modeling and machine learning communities. Chapter 3 introduces the core concepts of Bayesian optimization and discusses unconstrained optimization. Chapter 4 moves on to constrained optimization, and showcases some of the most novel methods found in the field. This will be a useful companion to researchers and practitioners working with computer experiments and computer modeling. Additionally, readers with a background in machine learning but minimal background in computer experiments will find this book an interesting case study of the applicability of Bayesian optimization outside the realm of machine learning. 001440219 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 13, 2021). 001440219 650_0 $$aExperimental design. 001440219 650_0 $$aComputer science$$xExperiments. 001440219 650_0 $$aBayesian statistical decision theory. 001440219 650_6 $$aPlan d'expérience. 001440219 650_6 $$aInformatique$$xExpériences. 001440219 650_6 $$aThéorie de la décision bayésienne. 001440219 655_0 $$aElectronic books. 001440219 7001_ $$aLee, Herbert K. H.,$$eauthor. 001440219 77608 $$iPrint version:$$aPourmohamad, Tony.$$tBayesian optimization with application to computer experiments.$$dCham : Springer, [2021]$$z3030824578$$z9783030824570$$w(OCoLC)1258674093 001440219 830_0 $$aSpringerBriefs in statistics. 001440219 852__ $$bebk 001440219 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-82458-7$$zOnline Access$$91397441.1 001440219 909CO $$ooai:library.usi.edu:1440219$$pGLOBAL_SET 001440219 980__ $$aBIB 001440219 980__ $$aEBOOK 001440219 982__ $$aEbook 001440219 983__ $$aOnline 001440219 994__ $$a92$$bISE