001440230 000__ 03443cam\a2200589\i\4500 001440230 001__ 1440230 001440230 003__ OCoLC 001440230 005__ 20230309004549.0 001440230 006__ m\\\\\o\\d\\\\\\\\ 001440230 007__ cr\un\nnnunnun 001440230 008__ 211009s2021\\\\sz\a\\\\ob\\\\000\0\eng\d 001440230 019__ $$a1274057803$$a1274125110$$a1276856619$$a1287777817 001440230 020__ $$a9783030852696$$q(electronic bk.) 001440230 020__ $$a3030852695$$q(electronic bk.) 001440230 020__ $$z9783030852689 001440230 020__ $$z3030852687 001440230 0247_ $$a10.1007/978-3-030-85269-6$$2doi 001440230 035__ $$aSP(OCoLC)1273969126 001440230 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dDCT$$dOCLCO$$dOCLCQ$$dCOM$$dOCLCO$$dUKAHL$$dN$T$$dOCLCQ 001440230 049__ $$aISEA 001440230 050_4 $$aQC174.45$$b.F56 2021 001440230 08204 $$a530.14/3$$223 001440230 1001_ $$aFinn, Kieran,$$eauthor. 001440230 24510 $$aGeometric approaches to quantum field theory /$$cKieran Finn. 001440230 264_1 $$aCham :$$bSpringer,$$c[2021] 001440230 264_4 $$c©2021 001440230 300__ $$a1 online resource :$$billustrations (chiefly color) 001440230 336__ $$atext$$btxt$$2rdacontent 001440230 337__ $$acomputer$$bc$$2rdamedia 001440230 338__ $$aonline resource$$bcr$$2rdacarrier 001440230 347__ $$atext file 001440230 347__ $$bPDF 001440230 4901_ $$aSpringer theses,$$x2190-5061 001440230 500__ $$a"Doctoral thesis accepted by University of Manchester, Manchester, United Kingdom." 001440230 504__ $$aIncludes bibliographical references. 001440230 5050_ $$aIntroduction -- Field Space Covariance -- Frame Covariance in Quantum Gravity -- Field Space Covariance for Fermionic Theories -- The Eisenhart Lift -- Cosmic Inflation -- Geometric Initial Conditions for Inflation -- Conclusions -- Appendices. 001440230 506__ $$aAccess limited to authorized users. 001440230 520__ $$aThe ancient Greeks believed that everything in the Universe should be describable in terms of geometry. This thesis takes several steps towards realising this goal by introducing geometric descriptions of systems such as quantum gravity, fermionic particles and the origins of the Universe itself. The author extends the applicability of previous work by Vilkovisky, DeWitt and others to include theories with spin ư and spin 2 degrees of freedom. In addition, he introduces a geometric description of the potential term in a quantum field theory through a process known as the Eisenhart lift. Finally, the methods are applied to the theory of inflation, where they show how geometry can help answer a long-standing question about the initial conditions of the Universe. This publication is aimed at graduate and advanced undergraduate students and provides a pedagogical introduction to the exciting topic of field space covariance and the complete geometrization of quantum field theory. 001440230 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 18, 2021). 001440230 650_0 $$aQuantum field theory$$xMathematics. 001440230 650_0 $$aGeometric quantization. 001440230 650_6 $$aThéorie quantique des champs$$xMathématiques. 001440230 650_6 $$aQuantification géométrique. 001440230 655_0 $$aElectronic books. 001440230 77608 $$iPrint version:$$aFinn, Kieran.$$tGeometric approaches to quantum field theory.$$dCham : Springer, [2021]$$z3030852687$$z9783030852689$$w(OCoLC)1260664044 001440230 830_0 $$aSpringer theses.$$x2190-5061 001440230 852__ $$bebk 001440230 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-85269-6$$zOnline Access$$91397441.1 001440230 909CO $$ooai:library.usi.edu:1440230$$pGLOBAL_SET 001440230 980__ $$aBIB 001440230 980__ $$aEBOOK 001440230 982__ $$aEbook 001440230 983__ $$aOnline 001440230 994__ $$a92$$bISE