001440305 000__ 02968cam\a2200577\i\4500 001440305 001__ 1440305 001440305 003__ OCoLC 001440305 005__ 20230309004554.0 001440305 006__ m\\\\\o\\d\\\\\\\\ 001440305 007__ cr\un\nnnunnun 001440305 008__ 211013s2021\\\\sz\\\\\\ob\\\\001\0\eng\d 001440305 019__ $$a1275426678$$a1276775408$$a1276861452 001440305 020__ $$a9783030820442$$q(electronic bk.) 001440305 020__ $$a3030820440$$q(electronic bk.) 001440305 020__ $$z9783030820435 001440305 020__ $$z3030820432 001440305 0247_ $$a10.1007/978-3-030-82044-2$$2doi 001440305 035__ $$aSP(OCoLC)1275358369 001440305 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dOCLCO$$dOCLCQ$$dCOM$$dOCLCO$$dSFB$$dOCLCQ 001440305 049__ $$aISEA 001440305 050_4 $$aQA387$$b.B35 2021 001440305 08204 $$a512/.482$$223 001440305 1001_ $$aBaklouti, Ali,$$eauthor. 001440305 24510 $$aRepresentation theory of solvable Lie groups and related topics /$$cAli Baklouti, Hidenori Fujiwara, Jean Ludwig. 001440305 264_1 $$aCham :$$bSpringer,$$c[2021] 001440305 264_4 $$c©2021 001440305 300__ $$a1 online resource 001440305 336__ $$atext$$btxt$$2rdacontent 001440305 337__ $$acomputer$$bc$$2rdamedia 001440305 338__ $$aonline resource$$bcr$$2rdacarrier 001440305 4901_ $$aSpringer monographs in mathematics,$$x2196-9922 001440305 504__ $$aIncludes bibliographical references and index. 001440305 506__ $$aAccess limited to authorized users. 001440305 520__ $$aThe purpose of the book is to discuss the latest advances in the theory of unitary representations and harmonic analysis for solvable Lie groups. The orbit method created by Kirillov is the most powerful tool to build the ground frame of these theories. Many problems are studied in the nilpotent case, but several obstacles arise when encompassing exponentially solvable settings. The book offers the most recent solutions to a number of open questions that arose over the last decades, presents the newest related results, and offers an alluring platform for progressing in this research area. The book is unique in the literature for which the readership extends to graduate students, researchers, and beginners in the fields of harmonic analysis on solvable homogeneous spaces. 001440305 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 18, 2021). 001440305 650_0 $$aLie groups. 001440305 650_0 $$aRepresentations of groups. 001440305 650_6 $$aGroupes de Lie. 001440305 650_6 $$aReprésentations de groupes. 001440305 655_7 $$aLlibres electrònics.$$2thub 001440305 655_0 $$aElectronic books. 001440305 7001_ $$aFujiwara, Hidenori,$$eauthor. 001440305 7001_ $$aLudwig, Jean,$$d1947-$$eauthor. 001440305 77608 $$iPrint version:$$aBaklouti, Ali.$$tRepresentation theory of solvable Lie groups and related topics.$$dCham : Springer, [2021]$$z3030820432$$z9783030820435$$w(OCoLC)1257889337 001440305 830_0 $$aSpringer monographs in mathematics.$$x2196-9922 001440305 852__ $$bebk 001440305 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-82044-2$$zOnline Access$$91397441.1 001440305 909CO $$ooai:library.usi.edu:1440305$$pGLOBAL_SET 001440305 980__ $$aBIB 001440305 980__ $$aEBOOK 001440305 982__ $$aEbook 001440305 983__ $$aOnline 001440305 994__ $$a92$$bISE