001440305 000__ 02968cam\a2200577\i\4500
001440305 001__ 1440305
001440305 003__ OCoLC
001440305 005__ 20230309004554.0
001440305 006__ m\\\\\o\\d\\\\\\\\
001440305 007__ cr\un\nnnunnun
001440305 008__ 211013s2021\\\\sz\\\\\\ob\\\\001\0\eng\d
001440305 019__ $$a1275426678$$a1276775408$$a1276861452
001440305 020__ $$a9783030820442$$q(electronic bk.)
001440305 020__ $$a3030820440$$q(electronic bk.)
001440305 020__ $$z9783030820435
001440305 020__ $$z3030820432
001440305 0247_ $$a10.1007/978-3-030-82044-2$$2doi
001440305 035__ $$aSP(OCoLC)1275358369
001440305 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dOCLCO$$dOCLCQ$$dCOM$$dOCLCO$$dSFB$$dOCLCQ
001440305 049__ $$aISEA
001440305 050_4 $$aQA387$$b.B35 2021
001440305 08204 $$a512/.482$$223
001440305 1001_ $$aBaklouti, Ali,$$eauthor.
001440305 24510 $$aRepresentation theory of solvable Lie groups and related topics /$$cAli Baklouti, Hidenori Fujiwara, Jean Ludwig.
001440305 264_1 $$aCham :$$bSpringer,$$c[2021]
001440305 264_4 $$c©2021
001440305 300__ $$a1 online resource
001440305 336__ $$atext$$btxt$$2rdacontent
001440305 337__ $$acomputer$$bc$$2rdamedia
001440305 338__ $$aonline resource$$bcr$$2rdacarrier
001440305 4901_ $$aSpringer monographs in mathematics,$$x2196-9922
001440305 504__ $$aIncludes bibliographical references and index.
001440305 506__ $$aAccess limited to authorized users.
001440305 520__ $$aThe purpose of the book is to discuss the latest advances in the theory of unitary representations and harmonic analysis for solvable Lie groups. The orbit method created by Kirillov is the most powerful tool to build the ground frame of these theories. Many problems are studied in the nilpotent case, but several obstacles arise when encompassing exponentially solvable settings. The book offers the most recent solutions to a number of open questions that arose over the last decades, presents the newest related results, and offers an alluring platform for progressing in this research area. The book is unique in the literature for which the readership extends to graduate students, researchers, and beginners in the fields of harmonic analysis on solvable homogeneous spaces.
001440305 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 18, 2021).
001440305 650_0 $$aLie groups.
001440305 650_0 $$aRepresentations of groups.
001440305 650_6 $$aGroupes de Lie.
001440305 650_6 $$aReprésentations de groupes.
001440305 655_7 $$aLlibres electrònics.$$2thub
001440305 655_0 $$aElectronic books.
001440305 7001_ $$aFujiwara, Hidenori,$$eauthor.
001440305 7001_ $$aLudwig, Jean,$$d1947-$$eauthor.
001440305 77608 $$iPrint version:$$aBaklouti, Ali.$$tRepresentation theory of solvable Lie groups and related topics.$$dCham : Springer, [2021]$$z3030820432$$z9783030820435$$w(OCoLC)1257889337
001440305 830_0 $$aSpringer monographs in mathematics.$$x2196-9922
001440305 852__ $$bebk
001440305 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-82044-2$$zOnline Access$$91397441.1
001440305 909CO $$ooai:library.usi.edu:1440305$$pGLOBAL_SET
001440305 980__ $$aBIB
001440305 980__ $$aEBOOK
001440305 982__ $$aEbook
001440305 983__ $$aOnline
001440305 994__ $$a92$$bISE