001440422 000__ 04372cam\a2200589\a\4500 001440422 001__ 1440422 001440422 003__ OCoLC 001440422 005__ 20230309004602.0 001440422 006__ m\\\\\o\\d\\\\\\\\ 001440422 007__ cr\un\nnnunnun 001440422 008__ 211021s2021\\\\sz\\\\\\ob\\\\001\0\eng\d 001440422 019__ $$a1280107717$$a1280197371$$a1287767559 001440422 020__ $$a9783030845827$$q(electronic bk.) 001440422 020__ $$a3030845826$$q(electronic bk.) 001440422 020__ $$z3030845818 001440422 020__ $$z9783030845810 001440422 0247_ $$a10.1007/978-3-030-84582-7$$2doi 001440422 035__ $$aSP(OCoLC)1280046787 001440422 040__ $$aYDX$$beng$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dDCT$$dOCLCO$$dOCLCQ$$dOCLCO$$dSFB$$dUKAHL$$dOCLCQ 001440422 049__ $$aISEA 001440422 050_4 $$aQP471 001440422 08204 $$a612.7/6015118$$223 001440422 1001_ $$aInsperger, T.$$q(Tamás) 001440422 24510 $$aDelay and uncertainty in human balancing tasks /$$cTamás Insperger, John Milton. 001440422 260__ $$aCham, Switzerland :$$bSpringer,$$c2021. 001440422 300__ $$a1 online resource 001440422 336__ $$atext$$btxt$$2rdacontent 001440422 337__ $$acomputer$$bc$$2rdamedia 001440422 338__ $$aonline resource$$bcr$$2rdacarrier 001440422 347__ $$atext file 001440422 347__ $$bPDF 001440422 4901_ $$aLecture notes on mathematical modelling in the life sciences,$$x2193-4797 001440422 504__ $$aIncludes bibliographical references and index. 001440422 5050_ $$a1. Introduction -- 2. Background -- 3. Pole Balancing at the Fingertip -- 4. Sensory Dead Zones: Switching Feedback -- 5. Microchaos in Balance Control -- 6. Postural Sway During Quiet Standing -- 7. Stability Radii and Uncertainty in Balance Control -- 8. Challenges for the Future -- References -- Semi-discretization Method -- Stability Radii: Some Mathematical Aspects -- Index. 001440422 506__ $$aAccess limited to authorized users. 001440422 520__ $$aThis book demonstrates how delay differential equations (DDEs) can be used to compliment the laboratory investigation of human balancing tasks. This approach is made accessible to non-specialists by comparing mathematical predictions and experimental observations. For example, the observation that a longer pole is easier to balance on a fingertip than a shorter one demonstrates the essential role played by a time delay in the balance control mechanism. Another balancing task considered is postural sway during quiet standing. With the inverted pendulum as the driver and the feedback control depending on state variables or on an internal model, the feedback can be identified by determining a critical pendulum length and/or a critical delay. This approach is used to identify the nature of the feedback for the pole balancing and postural sway examples. Motivated by the question of how the nervous system deals with these feedback control challenges, there is a discussion of "microchaotic" fluctuations in balance control and how robust control can be achieved in the face of uncertainties in the estimation of control parameters. The final chapter suggests some topics for future research. Each chapter includes an abstract and a point-by-point summary of the main concepts that have been established. A particularly useful numerical integration method for the DDEs that arise in balance control is semi-discretization. This method is described and a MATLAB template is provided. This book will be a useful source for anyone studying balance in humans, other bipedal organisms and humanoid robots. Much of the material has been used by the authors to teach senior undergraduates in computational neuroscience and students in bio-systems, biomedical, mechanical and neural engineering 001440422 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 28, 2021). 001440422 650_0 $$aEquilibrium (Physiology)$$xMathematical models. 001440422 650_0 $$aHuman mechanics$$xMathematical models. 001440422 650_0 $$aDelay differential equations. 001440422 650_6 $$aMécanique humaine$$xModèles mathématiques. 001440422 650_6 $$aÉquations différentielles à retard. 001440422 655_0 $$aElectronic books. 001440422 7001_ $$aMilton, John,$$d1950-$$eauthor. 001440422 77608 $$iPrint version: $$z3030845818$$z9783030845810$$w(OCoLC)1260193217 001440422 830_0 $$aLecture notes on mathematical modelling in the life sciences,$$x2193-4797 001440422 852__ $$bebk 001440422 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-84582-7$$zOnline Access$$91397441.1 001440422 909CO $$ooai:library.usi.edu:1440422$$pGLOBAL_SET 001440422 980__ $$aBIB 001440422 980__ $$aEBOOK 001440422 982__ $$aEbook 001440422 983__ $$aOnline 001440422 994__ $$a92$$bISE