001440646 000__ 05308cam\a2200589\i\4500 001440646 001__ 1440646 001440646 003__ OCoLC 001440646 005__ 20230309004653.0 001440646 006__ m\\\\\o\\d\\\\\\\\ 001440646 007__ cr\un\nnnunnun 001440646 008__ 211031s2021\\\\sz\a\\\\ob\\\\001\0\eng\d 001440646 019__ $$a1281652628$$a1283843357$$a1287776457 001440646 020__ $$a9783030826468$$q(electronic bk.) 001440646 020__ $$a3030826465$$q(electronic bk.) 001440646 020__ $$z9783030826451 001440646 020__ $$z3030826457 001440646 0247_ $$a10.1007/978-3-030-82646-8$$2doi 001440646 035__ $$aSP(OCoLC)1281584652 001440646 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dEBLCP$$dGW5XE$$dDCT$$dOCLCF$$dOCLCO$$dN$T$$dCOM$$dOCLCQ$$dOCLCO$$dUKAHL$$dOCLCQ 001440646 049__ $$aISEA 001440646 050_4 $$aTA357$$b.S53 2021 001440646 08204 $$a620.1/06$$223 001440646 1001_ $$aShashikanth, Banavara N.,$$eauthor. 001440646 24510 $$aDynamically coupled rigid body-fluid flow systems /$$cBanavara N. Shashikanth. 001440646 264_1 $$aCham :$$bSpringer,$$c[2021] 001440646 264_4 $$c©2021 001440646 300__ $$a1 online resource :$$billustrations (some color) 001440646 336__ $$atext$$btxt$$2rdacontent 001440646 337__ $$acomputer$$bc$$2rdamedia 001440646 338__ $$aonline resource$$bcr$$2rdacarrier 001440646 347__ $$atext file 001440646 347__ $$bPDF 001440646 504__ $$aIncludes bibliographical references and index. 001440646 5050_ $$aIntro -- Preface -- Contents -- 1 Kirchhoff's Insufficiently-Celebrated Equations of Motion -- 1.1 Introduction -- 1.2 Kirchhoff's Equations -- 1.3 The Legacy of Kirchhoff's Equations -- 1.4 The Geometric Mechanics of Kirchhoff's Equations -- 1.4.1 The Euler-Lagrange and Hamilton's Equations in the Spatially-Fixed Frame -- 1.5 Extending Kirchhoff's Model -- 1.5.1 The Sum Poisson Bracket -- 2 The Addition of Vortices -- 2.1 The Importance of Vorticity -- 2.2 Singular Vortex Models -- 2.2.1 The N-Point-Vortex Model -- 2.2.2 The N Vortex Ring Model 001440646 5058_ $$a3 Dynamically Coupled Rigid Body+Point Vortices in R2 -- 3.1 N-Point-Vortices and Stationary Rigid Boundaries: C.C. Lin's Problem -- 3.2 N-Point-Vortices Dynamically Coupled with a Single Rigid Contour of Arbitrary Shape -- 3.2.1 The Euler-Lagrange Equations in a Spatially-FixedFrame -- 3.2.2 The Vortical Momenta and Reciprocity Relations -- 3.3 N-Point-Vortices Dynamically Coupled with a Single Rigid Circular Contour -- 3.3.1 The Half-Space Model -- 4 Dynamically Coupled Rigid Body+Vortex Rings in R3 -- 4.1 N Vortex Rings and a Single Stationary Rigid Boundary 001440646 5058_ $$a4.2 N Vortex Rings Dynamically Coupled with a Single Rigid Body of Arbitrary Shape -- 4.2.1 The Euler-Lagrange Equations in a Spatially-FixedFrame -- 4.2.2 The Vortical Momenta and Reciprocity Relations -- 4.3 N Vortex Rings Dynamically Coupled with a Rigid Sphere -- 4.3.1 The Axisymmetric Model of a Sphere and N CircularRings -- 5 Viscous Effects and Their Modeling -- 5.1 System Momentum Balance Laws in the Viscous Setting -- 5.2 Some Experimental and Numerical Work of Vortex Rings Colliding with Rigid Bodies -- 6 Miscellaneous Extensions -- 6.1 Dynamically Coupled Rigid Body+free Surface 001440646 5058_ $$a6.1.1 A Free Surface Dynamically Coupled with a Completely Submerged Single Rigid Body of Arbitrary Shape -- 6.1.1.1 Phase Space and Hamiltonian Formalism -- 6.2 Dynamically Coupled N Rigid Bodies in the Absenceof Vorticity -- 6.2.1 The Euler-Lagrange Equations in a Spatially-FixedFrame -- 6.3 A Single Buoyant Rigid Body Above an Impermeable FlatBoundary -- A Brief Introduction to Geometric Mechanics -- B Leading Order Behavior of Velocity and Vector Potential Fields of a Curved Vortex Filament -- C Hamiltonian Function and Vector Field in the Half-space Model for Np=2 Sh2006 -- References 001440646 506__ $$aAccess limited to authorized users. 001440646 520__ $$aThis book presents a unified study of dynamically coupled systems involving a rigid body and an ideal fluid flow from the perspective of Lagrangian and Hamiltonian mechanics. It compiles theoretical investigations on the topic of dynamically coupled systems using a framework grounded in Kirchhoffs equations. The text achieves a balance between geometric mechanics, or the modern theories of reduction of Lagrangian and Hamiltonian systems, and classical fluid mechanics, with a special focus on the applications of these principles. Following an introduction to Kirchhoffs equations of motion, the book discusses several extensions of Kirchhoffs work, particularly related to vortices. It addresses the equations of motions of these systems and their Lagrangian and Hamiltonian formulations. The book is suitable to mathematicians, physicists and engineers with a background in Lagrangian and Hamiltonian mechanics and theoretical fluid mechanics. It includes a brief introductory overview of geometric mechanics in the appendix. 001440646 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed November 10, 2021). 001440646 650_0 $$aFluid dynamics. 001440646 650_0 $$aDifferentiable dynamical systems. 001440646 650_6 $$aDynamique des fluides. 001440646 650_6 $$aDynamique différentiable. 001440646 655_0 $$aElectronic books. 001440646 77608 $$iPrint version:$$z3030826457$$z9783030826451$$w(OCoLC)1259049739 001440646 852__ $$bebk 001440646 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-82646-8$$zOnline Access$$91397441.1 001440646 909CO $$ooai:library.usi.edu:1440646$$pGLOBAL_SET 001440646 980__ $$aBIB 001440646 980__ $$aEBOOK 001440646 982__ $$aEbook 001440646 983__ $$aOnline 001440646 994__ $$a92$$bISE