001440825 000__ 03711cam\a2200565\a\4500 001440825 001__ 1440825 001440825 003__ OCoLC 001440825 005__ 20230309004704.0 001440825 006__ m\\\\\o\\d\\\\\\\\ 001440825 007__ cr\un\nnnunnun 001440825 008__ 211109s2021\\\\sz\\\\\\ob\\\\001\0\eng\d 001440825 019__ $$a1294364668 001440825 020__ $$a9783030885342$$q(electronic bk.) 001440825 020__ $$a3030885348$$q(electronic bk.) 001440825 020__ $$z303088533X 001440825 020__ $$z9783030885335 001440825 0247_ $$a10.1007/978-3-030-88534-2$$2doi 001440825 035__ $$aSP(OCoLC)1284875998 001440825 040__ $$aYDX$$beng$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dOCLCO$$dDCT$$dOCLCQ$$dCOM$$dOCLCO$$dSFB$$dUKAHL$$dOCLCQ 001440825 049__ $$aISEA 001440825 050_4 $$aQA8.4 001440825 08204 $$a510.1$$223 001440825 1001_ $$aHansen, Casper Storm. 001440825 24510 $$aFounding mathematics on semantic conventions /$$cCasper Storm Hansen. 001440825 260__ $$aCham, Switzerland :$$bSpringer,$$c2021. 001440825 300__ $$a1 online resource 001440825 336__ $$atext$$btxt$$2rdacontent 001440825 337__ $$acomputer$$bc$$2rdamedia 001440825 338__ $$aonline resource$$bcr$$2rdacarrier 001440825 347__ $$atext file 001440825 347__ $$bPDF 001440825 4901_ $$aSynthese Library,$$x2542-8292 ;$$vv. 446 001440825 504__ $$aIncludes bibliographical references and index. 001440825 5050_ $$a1. Introduction -- 2. Classical Mathematics and Plenitudinous Combinatorialism -- 3 Intuitionism and Choice Sequences -- 4. From Logicism to Predicativism -- 5. Conventional Truth -- 6. Semantic Conventionalism for Mathematics -- 7. A Convention for a Type-free Language -- 8. Basic Mathematics -- 9. Real Analysis -- 10. Possibility -- References -- Index of symbols -- General index. 001440825 506__ $$aAccess limited to authorized users. 001440825 520__ $$aThis book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language and specifically, the ability to institute conventions for the truth conditions of sentences. This philosophical stance leads to an alternative way of practicing mathematics: instead of building objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory. Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis. Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell's paradox and the other mathematical paradoxes of self-reference. In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches. 001440825 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed November 9, 2021). 001440825 650_0 $$aMathematics$$xPhilosophy. 001440825 650_0 $$aLogic, Symbolic and mathematical. 001440825 650_6 $$aMathématiques$$xPhilosophie. 001440825 650_6 $$aLogique symbolique et mathématique. 001440825 655_0 $$aElectronic books. 001440825 77608 $$iPrint version:$$aHansen, Casper Storm.$$tFounding mathematics on semantic conventions.$$dCham, Switzerland : Springer, 2021$$z303088533X$$z9783030885335$$w(OCoLC)1266896257 001440825 830_0 $$aSynthese library ;$$vv. 446.$$x2542-8292 001440825 852__ $$bebk 001440825 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-88534-2$$zOnline Access$$91397441.1 001440825 909CO $$ooai:library.usi.edu:1440825$$pGLOBAL_SET 001440825 980__ $$aBIB 001440825 980__ $$aEBOOK 001440825 982__ $$aEbook 001440825 983__ $$aOnline 001440825 994__ $$a92$$bISE