001440851 000__ 03288cam\a2200529\i\4500 001440851 001__ 1440851 001440851 003__ OCoLC 001440851 005__ 20230309004705.0 001440851 006__ m\\\\\o\\d\\\\\\\\ 001440851 007__ cr\un\nnnunnun 001440851 008__ 211110s2021\\\\sz\a\\\\o\\\\\000\0\eng\d 001440851 019__ $$a1285121234$$a1285150404$$a1285163127$$a1285238740$$a1294356266 001440851 020__ $$a9783030814960$$q(electronic bk.) 001440851 020__ $$a3030814963$$q(electronic bk.) 001440851 020__ $$z9783030814953$$q(print) 001440851 020__ $$z3030814955 001440851 0247_ $$a10.1007/978-3-030-81496-0$$2doi 001440851 035__ $$aSP(OCoLC)1284998138 001440851 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dYDX$$dOCLCF$$dOCLCO$$dDCT$$dOCLCQ$$dOCLCO$$dUKAHL$$dOCLCQ 001440851 049__ $$aISEA 001440851 050_4 $$aQA279.6 001440851 08204 $$a519.5/42$$223 001440851 1001_ $$aDikopoulou, Zoumpolia,$$eauthor. 001440851 24510 $$aModeling and simulating complex business perceptions :$$busing graphical models and fuzzy cognitive aps /$$cZoumpolia Dikopoulou. 001440851 264_1 $$aCham, Switzerland :$$bSpringer,$$c2021. 001440851 300__ $$a1 online resource (xxv 154 pages) :$$billustrations (some color) 001440851 336__ $$atext$$btxt$$2rdacontent 001440851 337__ $$acomputer$$bc$$2rdamedia 001440851 338__ $$aonline resource$$bcr$$2rdacarrier 001440851 347__ $$atext file 001440851 347__ $$bPDF 001440851 4901_ $$aFuzzy management methods,$$x2196-4149 001440851 5050_ $$aChapter 1. Introduction -- Chapter 2. Data Analysis -- Chapter 3. Fuzzy Cognitive Maps -- Chapter 4. Data Modeling -- Chapter 5. Network analysis, accuracy and stability of the job-satisfaction structures -- Chapter 6. The proposed data-driven glassoFCM method -- Chapter 7. Thesis Conclusions. 001440851 506__ $$aAccess limited to authorized users. 001440851 520__ $$aFuzzy cognitive maps (FCMs) have gained popularity in the scientific community due to their capabilities in modeling and decision making for complex problems. This book presents a novel algorithm called glassoFCM to enable automatic learning of FCM models from data. Specifically, glassoFCM is a combination of two methods, glasso (a technique originated from machine learning) for data modeling and FCM simulation for decision making. The book outlines that glassoFCM elaborates simple, accurate, and more stable models that are easy to interpret and offer meaningful decisions. The research results presented are based on an investigation related to a real-world business intelligence problem to evaluate characteristics that influence employee work readiness. Finally, this book provides readers with a step-by-step guide of the 'fcm' package to execute and visualize their policies and decisions through the FCM simulation process. 001440851 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed November 10, 2021). 001440851 650_0 $$aFuzzy decision making. 001440851 650_6 $$aPrise de décision floue. 001440851 655_0 $$aElectronic books. 001440851 77608 $$iPrint version:$$aDikopoulou, Zoumpolia.$$tModeling and simulating complex business perceptions.$$dCham, Switzerland : Springer, 2021$$z3030814955$$z9783030814953$$w(OCoLC)1257401878 001440851 830_0 $$aFuzzy management methods,$$x2196-4149 001440851 852__ $$bebk 001440851 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-81496-0$$zOnline Access$$91397441.1 001440851 909CO $$ooai:library.usi.edu:1440851$$pGLOBAL_SET 001440851 980__ $$aBIB 001440851 980__ $$aEBOOK 001440851 982__ $$aEbook 001440851 983__ $$aOnline 001440851 994__ $$a92$$bISE