001441161 000__ 03829cam\a2200577\i\4500 001441161 001__ 1441161 001441161 003__ OCoLC 001441161 005__ 20230309004723.0 001441161 006__ m\\\\\o\\d\\\\\\\\ 001441161 007__ cr\un\nnnunnun 001441161 008__ 211203s2021\\\\sz\a\\\\ob\\\\001\0\eng\d 001441161 019__ $$a1287125803$$a1287199794$$a1288214128$$a1294366914 001441161 020__ $$a9783030767051$$q(electronic bk.) 001441161 020__ $$a3030767051$$q(electronic bk.) 001441161 020__ $$z9783030767044 001441161 020__ $$z3030767043 001441161 0247_ $$a10.1007/978-3-030-76705-1$$2doi 001441161 035__ $$aSP(OCoLC)1287103571 001441161 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dOCLCO$$dDCT$$dOCLCQ$$dCOM$$dOCLCO$$dUKAHL$$dOCLCQ 001441161 049__ $$aISEA 001441161 050_4 $$aQA613.62$$b.S33 2021 001441161 08204 $$a514/.72$$223 001441161 1001_ $$aScárdua, Bruno,$$eauthor. 001441161 24510 $$aHolomorphic foliations with singularities :$$bkey concepts and modern results /$$cBruno Scárdua. 001441161 264_1 $$aCham :$$bSpringer,$$c[2021] 001441161 264_4 $$c©2021 001441161 300__ $$a1 online resource :$$billustrations (some color) 001441161 336__ $$atext$$btxt$$2rdacontent 001441161 337__ $$acomputer$$bc$$2rdamedia 001441161 338__ $$aonline resource$$bcr$$2rdacarrier 001441161 347__ $$atext file 001441161 347__ $$bPDF 001441161 4901_ $$aLatin American mathematics series 001441161 504__ $$aIncludes bibliographical references and index. 001441161 5050_ $$aPreface -- The Classical Notions of Foliations -- Some Results from Several Complex Variables -- Holomorphic Foliations: Nonsingular Case -- Holomorphic Foliations with Singularities -- Holomorphic Foliations Given by Closed 1-Forms -- Reduction of Singularities -- Holomorphic First Integrals -- Dynamics of a Local Diffeomorphism -- Foliations on Complex Projective Spaces -- Foliations with Algebraic Limit Sets -- Some Modern Questions -- Miscellaneous exercises and some open questions. 001441161 506__ $$aAccess limited to authorized users. 001441161 520__ $$aThis concise textbook gathers together key concepts and modern results on the theory of holomorphic foliations with singularities, offering a compelling vision on how the notion of foliation, usually linked to real functions and manifolds, can have an important role in the holomorphic world, as shown by modern results from mathematicians as H. Cartan, K. Oka, T. Nishino, and M. Suzuki. The text starts with a gentle presentation of the classical notion of foliations, advancing to holomorphic foliations and then holomorphic foliations with singularities. The theory behind reduction of singularities is described in detail, as well the cases for dynamics of a local diffeomorphism and foliations on complex projective spaces. A final chapter brings recent questions in the field, as holomorphic flows on Stein spaces and transversely homogeneous holomorphic foliations, along with a list of open questions for further study and research. Selected exercises at the end of each chapter help the reader to grasp the theory. Graduate students in Mathematics with a special interest in the theory of foliations will especially benefit from this book, which can be used as supplementary reading in Singularity Theory courses, and as a resource for independent study on this vibrant field of research. 001441161 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed December 16, 2021). 001441161 650_0 $$aFoliations (Mathematics) 001441161 650_0 $$aDomains of holomorphy. 001441161 650_6 $$aFeuilletages (Mathématiques) 001441161 650_6 $$aDomaines d'holomorphie. 001441161 655_0 $$aElectronic books. 001441161 77608 $$iPrint version: $$z3030767043$$z9783030767044$$w(OCoLC)1247665819 001441161 830_0 $$aLatin American mathematics series. 001441161 852__ $$bebk 001441161 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-76705-1$$zOnline Access$$91397441.1 001441161 909CO $$ooai:library.usi.edu:1441161$$pGLOBAL_SET 001441161 980__ $$aBIB 001441161 980__ $$aEBOOK 001441161 982__ $$aEbook 001441161 983__ $$aOnline 001441161 994__ $$a92$$bISE