001441372 000__ 03802cam\a2200649\i\4500
001441372 001__ 1441372
001441372 003__ OCoLC
001441372 005__ 20230309004735.0
001441372 006__ m\\\\\o\\d\\\\\\\\
001441372 007__ cr\un\nnnunnun
001441372 008__ 211219s2021\\\\si\a\\\\o\\\\\010\0\eng\d
001441372 019__ $$a1288961836$$a1289230393$$a1289341347$$a1289364201$$a1289367227$$a1290019179$$a1294360837
001441372 020__ $$a9789811646836$$q(electronic bk.)
001441372 020__ $$a981164683X$$q(electronic bk.)
001441372 020__ $$z9789811646829
001441372 020__ $$z9811646821
001441372 0247_ $$a10.1007/978-981-16-4683-6$$2doi
001441372 035__ $$aSP(OCoLC)1289443787
001441372 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dOCLCO$$dDCT$$dOCLCQ$$dOCLCO$$dSFB$$dN$T$$dUKAHL$$dOCLCQ
001441372 049__ $$aISEA
001441372 050_4 $$aQA371$$b.S96 2021
001441372 08204 $$a515/.35$$223
001441372 24500 $$aSymmetries and applications of differential equations :$$bin memory of Nail H. Ibragimov (1939-2018) /$$cAlbert C.J. Luo, Rafail K. Gazizov, editors.
001441372 264_1 $$aSingapore :$$bSpringer ;$$a[China] :$$bHigher Education Press,$$c[2021]
001441372 264_4 $$c©2021
001441372 300__ $$a1 online resource :$$billustrations (chiefly color)
001441372 336__ $$atext$$btxt$$2rdacontent
001441372 337__ $$acomputer$$bc$$2rdamedia
001441372 338__ $$aonline resource$$bcr$$2rdacarrier
001441372 347__ $$atext file
001441372 347__ $$bPDF
001441372 4901_ $$aNonlinear physical science
001441372 5050_ $$aApproximate symmetry in nonlinear physics problems -- One-dimensional ows of a polytropic gas: Lie group classication, conservation laws, invariant and conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity theory -- Complex methods for Lie symmetry analysis -- Symmetry analysis and conservation laws of a family of Boussinesq equations -- Group Analysis of the Gueant and Pu Model of Option Pricing and Hedging -- On Involutive Systems of Partial Differential Equations -- Group analysis of some Camassa-Holm type equations.
001441372 506__ $$aAccess limited to authorized users.
001441372 520__ $$aThis book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classication, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (19392018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.
001441372 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed December 28, 2021).
001441372 650_0 $$aDifferential equations.
001441372 650_0 $$aLie groups.
001441372 650_0 $$aSymmetry (Mathematics)
001441372 650_6 $$aÉquations différentielles.
001441372 650_6 $$aGroupes de Lie.
001441372 650_6 $$aSymétrie (Mathématiques)
001441372 655_7 $$aFestschriften.$$2fast$$0(OCoLC)fst01941036
001441372 655_7 $$aFestschriften.$$2lcgft
001441372 655_7 $$aLlibres electrònics.$$2thub
001441372 655_0 $$aElectronic books.
001441372 7001_ $$aLuo, Albert C. J.,$$eeditor.
001441372 7001_ $$aGazizov, Rafail K.,$$eeditor.
001441372 7001_ $$aIbragimov, N. Kh.$$q(Nailʹ Khaĭrullovich),$$ehonoree.
001441372 77608 $$iPrint version:$$tSymmetries and applications of differential equations.$$dSingapore : Springer ; [China] : Higher Education Press, [2021]$$z9811646821$$z9789811646829$$w(OCoLC)1258674050
001441372 830_0 $$aNonlinear physical science.
001441372 852__ $$bebk
001441372 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-16-4683-6$$zOnline Access$$91397441.1
001441372 909CO $$ooai:library.usi.edu:1441372$$pGLOBAL_SET
001441372 980__ $$aBIB
001441372 980__ $$aEBOOK
001441372 982__ $$aEbook
001441372 983__ $$aOnline
001441372 994__ $$a92$$bISE