001441372 000__ 03802cam\a2200649\i\4500 001441372 001__ 1441372 001441372 003__ OCoLC 001441372 005__ 20230309004735.0 001441372 006__ m\\\\\o\\d\\\\\\\\ 001441372 007__ cr\un\nnnunnun 001441372 008__ 211219s2021\\\\si\a\\\\o\\\\\010\0\eng\d 001441372 019__ $$a1288961836$$a1289230393$$a1289341347$$a1289364201$$a1289367227$$a1290019179$$a1294360837 001441372 020__ $$a9789811646836$$q(electronic bk.) 001441372 020__ $$a981164683X$$q(electronic bk.) 001441372 020__ $$z9789811646829 001441372 020__ $$z9811646821 001441372 0247_ $$a10.1007/978-981-16-4683-6$$2doi 001441372 035__ $$aSP(OCoLC)1289443787 001441372 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dOCLCO$$dDCT$$dOCLCQ$$dOCLCO$$dSFB$$dN$T$$dUKAHL$$dOCLCQ 001441372 049__ $$aISEA 001441372 050_4 $$aQA371$$b.S96 2021 001441372 08204 $$a515/.35$$223 001441372 24500 $$aSymmetries and applications of differential equations :$$bin memory of Nail H. Ibragimov (1939-2018) /$$cAlbert C.J. Luo, Rafail K. Gazizov, editors. 001441372 264_1 $$aSingapore :$$bSpringer ;$$a[China] :$$bHigher Education Press,$$c[2021] 001441372 264_4 $$c©2021 001441372 300__ $$a1 online resource :$$billustrations (chiefly color) 001441372 336__ $$atext$$btxt$$2rdacontent 001441372 337__ $$acomputer$$bc$$2rdamedia 001441372 338__ $$aonline resource$$bcr$$2rdacarrier 001441372 347__ $$atext file 001441372 347__ $$bPDF 001441372 4901_ $$aNonlinear physical science 001441372 5050_ $$aApproximate symmetry in nonlinear physics problems -- One-dimensional ows of a polytropic gas: Lie group classication, conservation laws, invariant and conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity theory -- Complex methods for Lie symmetry analysis -- Symmetry analysis and conservation laws of a family of Boussinesq equations -- Group Analysis of the Gueant and Pu Model of Option Pricing and Hedging -- On Involutive Systems of Partial Differential Equations -- Group analysis of some Camassa-Holm type equations. 001441372 506__ $$aAccess limited to authorized users. 001441372 520__ $$aThis book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classication, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (19392018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering. 001441372 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed December 28, 2021). 001441372 650_0 $$aDifferential equations. 001441372 650_0 $$aLie groups. 001441372 650_0 $$aSymmetry (Mathematics) 001441372 650_6 $$aÉquations différentielles. 001441372 650_6 $$aGroupes de Lie. 001441372 650_6 $$aSymétrie (Mathématiques) 001441372 655_7 $$aFestschriften.$$2fast$$0(OCoLC)fst01941036 001441372 655_7 $$aFestschriften.$$2lcgft 001441372 655_7 $$aLlibres electrònics.$$2thub 001441372 655_0 $$aElectronic books. 001441372 7001_ $$aLuo, Albert C. J.,$$eeditor. 001441372 7001_ $$aGazizov, Rafail K.,$$eeditor. 001441372 7001_ $$aIbragimov, N. Kh.$$q(Nailʹ Khaĭrullovich),$$ehonoree. 001441372 77608 $$iPrint version:$$tSymmetries and applications of differential equations.$$dSingapore : Springer ; [China] : Higher Education Press, [2021]$$z9811646821$$z9789811646829$$w(OCoLC)1258674050 001441372 830_0 $$aNonlinear physical science. 001441372 852__ $$bebk 001441372 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-16-4683-6$$zOnline Access$$91397441.1 001441372 909CO $$ooai:library.usi.edu:1441372$$pGLOBAL_SET 001441372 980__ $$aBIB 001441372 980__ $$aEBOOK 001441372 982__ $$aEbook 001441372 983__ $$aOnline 001441372 994__ $$a92$$bISE