001441524 000__ 03055cam\a2200541Ia\4500 001441524 001__ 1441524 001441524 003__ OCoLC 001441524 005__ 20230309004744.0 001441524 006__ m\\\\\o\\d\\\\\\\\ 001441524 007__ cr\un\nnnunnun 001441524 008__ 220105s2021\\\\sz\\\\\\ob\\\\001\0\eng\d 001441524 019__ $$a1290814325$$a1291316382$$a1292358162$$a1292518168$$a1294357249 001441524 020__ $$a9783030881320$$q(electronic bk.) 001441524 020__ $$a3030881326$$q(electronic bk.) 001441524 020__ $$z3030881318 001441524 020__ $$z9783030881313 001441524 0247_ $$a10.1007/978-3-030-88132-0$$2doi 001441524 035__ $$aSP(OCoLC)1290841546 001441524 040__ $$aYDX$$beng$$cYDX$$dGW5XE$$dEBLCP$$dDKU$$dOCLCO$$dDCT$$dOCLCF$$dOCLCO$$dUKAHL$$dOCLCQ 001441524 049__ $$aISEA 001441524 050_4 $$aQ325.5 001441524 08204 $$a006.3/1$$223 001441524 1001_ $$aZhu, Wenwu,$$eauthor. 001441524 24510 $$aAutomated machine learning and meta-learning for multimedia /$$cWenwu Zhu, Xin Wang. 001441524 260__ $$aCham, Switzerland :$$bSpringer,$$c2021. 001441524 300__ $$a1 online resource 001441524 336__ $$atext$$btxt$$2rdacontent 001441524 337__ $$acomputer$$bc$$2rdamedia 001441524 338__ $$aonline resource$$bcr$$2rdacarrier 001441524 347__ $$atext file$$bPDF$$2rda 001441524 504__ $$aIncludes bibliographical references and index. 001441524 5050_ $$aAutomated Machine Learning -- Meta-learning -- Automated Machine Learning for Multimedia -- Meta-learning for Multimedia -- Future Research Directions. 001441524 506__ $$aAccess limited to authorized users. 001441524 520__ $$aThis book disseminates and promotes the recent research progress and frontier development on AutoML and meta-learning as well as their applications on computer vision, natural language processing, multimedia and data mining related fields. These are exciting and fast-growing research directions in the general field of machine learning. The authors advocate novel, high-quality research findings, and innovative solutions to the challenging problems in AutoML and meta-learning. This topic is at the core of the scope of artificial intelligence, and is attractive to audience from both academia and industry. This book is highly accessible to the whole machine learning community, including: researchers, students and practitioners who are interested in AutoML, meta-learning, and their applications in multimedia, computer vision, natural language processing and data mining related tasks. The book is self-contained and designed for introductory and intermediate audiences. No special prerequisite knowledge is required to read this book. 001441524 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed January 18, 2022). 001441524 650_0 $$aMachine learning. 001441524 650_0 $$aMultimedia systems. 001441524 650_6 $$aApprentissage automatique. 001441524 650_6 $$aMultimédia. 001441524 655_0 $$aElectronic books. 001441524 7001_ $$aWang, Xin,$$eauthor. 001441524 77608 $$iPrint version: $$z3030881318$$z9783030881313$$w(OCoLC)1265456399 001441524 852__ $$bebk 001441524 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-88132-0$$zOnline Access$$91397441.1 001441524 909CO $$ooai:library.usi.edu:1441524$$pGLOBAL_SET 001441524 980__ $$aBIB 001441524 980__ $$aEBOOK 001441524 982__ $$aEbook 001441524 983__ $$aOnline 001441524 994__ $$a92$$bISE