001441621 000__ 03185cam\a2200553\a\4500
001441621 001__ 1441621
001441621 003__ OCoLC
001441621 005__ 20230309003336.0
001441621 006__ m\\\\\o\\d\\\\\\\\
001441621 007__ cr\un\nnnunnun
001441621 008__ 220108s2021\\\\si\\\\\\o\\\\\000\0\eng\d
001441621 019__ $$a1290814230$$a1290839310$$a1294349806
001441621 020__ $$a9789811678813$$q(electronic bk.)
001441621 020__ $$a9811678812$$q(electronic bk.)
001441621 020__ $$z9789811678806
001441621 020__ $$z9811678804
001441621 0247_ $$a10.1007/978-981-16-7881-3$$2doi
001441621 035__ $$aSP(OCoLC)1291315954
001441621 040__ $$aEBLCP$$beng$$epn$$cEBLCP$$dGW5XE$$dYDX$$dEBLCP$$dOCLCO$$dDCT$$dOCLCF$$dOCLCO$$dSFB$$dOCLCQ$$dUKAHL$$dOCLCQ
001441621 049__ $$aISEA
001441621 050_4 $$aQA403.3
001441621 08204 $$a515/.2433$$223
001441621 1001_ $$aBehera, Biswaranjan.
001441621 24510 $$aWavelet analysis on local fields of positive characteristic /$$cBiswaranjan Behera, Qaiser Jahan.
001441621 260__ $$aSingapore :$$bSpringer,$$c2021.
001441621 300__ $$a1 online resource (345 pages)
001441621 336__ $$atext$$btxt$$2rdacontent
001441621 337__ $$acomputer$$bc$$2rdamedia
001441621 338__ $$aonline resource$$bcr$$2rdacarrier
001441621 347__ $$atext file
001441621 347__ $$bPDF
001441621 4901_ $$aIndian Statistical Institute series
001441621 5050_ $$aLocal Fields -- Multiresolution Analysis on Local Fields -- Affine, Quasi-Affine and Co-Affine Frames -- Characterizations in Wavelet Analysis -- Biorthogonal Wavelets -- Wavelet Packets and Frame Packets -- Wavelets as Unconditional Bases -- Shift-Invariant Spaces and Wavelets.
001441621 506__ $$aAccess limited to authorized users.
001441621 520__ $$aThis book discusses the theory of wavelets on local fields of positive characteristic. The discussion starts with a thorough introduction to topological groups and local fields. It then provides a proof of the existence and uniqueness of Haar measures on locally compact groups. It later gives several examples of locally compact groups and describes their Haar measures. The book focuses on multiresolution analysis and wavelets on a local field of positive characteristic. It provides characterizations of various functions associated with wavelet analysis such as scaling functions, wavelets, MRA-wavelets and low-pass filters. Many other concepts which are discussed in details are biorthogonal wavelets, wavelet packets, affine and quasi-affine frames, MSF multiwavelets, multiwavelet sets, generalized scaling sets, scaling sets, unconditional basis properties of wavelets and shift invariant spaces.
001441621 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed January 11, 2022).
001441621 650_0 $$aWavelets (Mathematics)
001441621 650_6 $$aOndelettes.
001441621 655_7 $$aLlibres electrònics.$$2thub
001441621 655_0 $$aElectronic books.
001441621 7001_ $$aJahan, Qaiser.
001441621 77608 $$iPrint version:$$aBehera, Biswaranjan.$$tWavelet Analysis on Local Fields of Positive Characteristic.$$dSingapore : Springer Singapore Pte. Limited, ©2021$$z9789811678806
001441621 830_0 $$aIndian Statistical Institute series.
001441621 852__ $$bebk
001441621 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-16-7881-3$$zOnline Access$$91397441.1
001441621 909CO $$ooai:library.usi.edu:1441621$$pGLOBAL_SET
001441621 980__ $$aBIB
001441621 980__ $$aEBOOK
001441621 982__ $$aEbook
001441621 983__ $$aOnline
001441621 994__ $$a92$$bISE