TY - GEN AB - This volume contains articles related to the work of the Simons Collaboration "Arithmetic Geometry, Number Theory, and Computation." The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include algebraic varieties over finite fields the Chabauty-Coleman method modular forms rational points on curves of small genus S-unit equations and integral points. AU - Balakrishnan, Jennifer S. AU - Elkies, Noam, AU - Hassett, Brendan, AU - Poonen, Bjorn, AU - Sutherland, Andrew V. AU - Voight, John CN - QA242.5 CY - Cham, Switzerland : DA - 2021. DO - 10.1007/978-3-030-80914-0 DO - doi ID - 1441917 KW - Arithmetical algebraic geometry. KW - Number theory. KW - Geometry, Algebraic. KW - Géométrie algébrique. KW - Théorie des nombres. KW - Informatique. KW - Géométrie algébrique arithmétique. LK - https://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-80914-0 N2 - This volume contains articles related to the work of the Simons Collaboration "Arithmetic Geometry, Number Theory, and Computation." The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include algebraic varieties over finite fields the Chabauty-Coleman method modular forms rational points on curves of small genus S-unit equations and integral points. PB - Springer, PP - Cham, Switzerland : PY - 2021. SN - 9783030809140 SN - 3030809145 SN - 9783030809157 SN - 3030809153 SN - 9783030809164 SN - 3030809161 T1 - Arithmetic geometry, number theory, and computation / TI - Arithmetic geometry, number theory, and computation / UR - https://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-80914-0 ER -