001442652 000__ 03473cam\a2200565\a\4500 001442652 001__ 1442652 001442652 003__ OCoLC 001442652 005__ 20230310003429.0 001442652 006__ m\\\\\o\\d\\\\\\\\ 001442652 007__ cr\un\nnnunnun 001442652 008__ 211109s2022\\\\sz\\\\\\ob\\\\000\0\eng\d 001442652 019__ $$a1284950288$$a1284981119$$a1285016131$$a1285052991$$a1294351089$$a1294359912$$a1296666880 001442652 020__ $$a9783030872120$$q(electronic bk.) 001442652 020__ $$a3030872122$$q(electronic bk.) 001442652 020__ $$z3030872114 001442652 020__ $$z9783030872113 001442652 0247_ $$a10.1007/978-3-030-87212-0$$2doi 001442652 035__ $$aSP(OCoLC)1284877863 001442652 040__ $$aYDX$$beng$$epn$$cYDX$$dGW5XE$$dOCLCF$$dOCLCO$$dDCT$$dDKU$$dOCLCQ$$dOCLCO$$dPFM$$dOCLCQ 001442652 049__ $$aISEA 001442652 050_4 $$aTJ211.35 001442652 08204 $$a629.8/92$$223 001442652 1001_ $$aHenze, Bernd. 001442652 24510 $$aWhole-body control for multi-contact balancing of humanoid robots :$$bdesign and experiments /$$cBernd Henze. 001442652 260__ $$aCham, Switzerland :$$bSpringer,$$c[2022] 001442652 300__ $$a1 online resource 001442652 336__ $$atext$$btxt$$2rdacontent 001442652 337__ $$acomputer$$bc$$2rdamedia 001442652 338__ $$aonline resource$$bcr$$2rdacarrier 001442652 347__ $$atext file 001442652 347__ $$bPDF 001442652 4901_ $$aSpringer tracts in advanced robotics,$$x1610-742X ;$$vv. 143 001442652 504__ $$aIncludes bibliographical references. 001442652 5050_ $$aIntroduction -- Notation -- Modeling -- Cartesian Compliance -- Torque-Controlled Humanoid Robot TORO -- Whole-Body Control for Multi-Contact Balancing -- Combining Multi-Contact Balancing with Hierarchical Whole-Body Control -- Balance Control based on Reduced Dynamic Models -- Applications -- Discussion and Conclusion. 001442652 506__ $$aAccess limited to authorized users. 001442652 520__ $$aThis book aims at providing algorithms for balance control of legged, torque-controlled humanoid robots. A humanoid robot normally uses the feet for locomotion. This paradigm is extended by addressing the challenge of multi-contact balancing, which allows a humanoid robot to exploit an arbitrary number of contacts for support. Using multiple contacts increases the size of the support polygon, which in turn leads to an increased robustness of the stance and to an increased kinematic workspace of the robot. Both are important features for facilitating a transition of humanoid robots from research laboratories to real-world applications, where they are confronted with multiple challenging scenarios, such as climbing stairs and ladders, traversing debris, handling heavy loads, or working in confined spaces. The distribution of forces and torques among the multiple contacts is a challenging aspect of the problem, which arises from the closed kinematic chain given by the robot and its environment. 001442652 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed November 9, 2021). 001442652 650_0 $$aRobots$$xControl systems. 001442652 650_0 $$aAndroids. 001442652 650_6 $$aRobots$$xSystèmes de commande. 001442652 650_6 $$aAndroïdes. 001442652 655_0 $$aElectronic books. 001442652 77608 $$iPrint version:$$aHenze, Bernd.$$tWhole-body control for multi-contact balancing of humanoid robots.$$dCham, Switzerland : Springer, [2022]$$z3030872114$$z9783030872113$$w(OCoLC)1264138932 001442652 830_0 $$aSpringer tracts in advanced robotics ;$$vv. 143.$$x1610-742X 001442652 852__ $$bebk 001442652 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-87212-0$$zOnline Access$$91397441.1 001442652 909CO $$ooai:library.usi.edu:1442652$$pGLOBAL_SET 001442652 980__ $$aBIB 001442652 980__ $$aEBOOK 001442652 982__ $$aEbook 001442652 983__ $$aOnline 001442652 994__ $$a92$$bISE