001443461 000__ 03272cam\a2200589Ii\4500 001443461 001__ 1443461 001443461 003__ OCoLC 001443461 005__ 20230310003545.0 001443461 006__ m\\\\\o\\d\\\\\\\\ 001443461 007__ cr\un\nnnunnun 001443461 008__ 220105s2022\\\\sz\a\\\\ob\\\\000\0\eng\d 001443461 019__ $$a1291146755$$a1291171552$$a1291315240$$a1294353422 001443461 020__ $$a9783030886899$$q(electronic bk.) 001443461 020__ $$a3030886891$$q(electronic bk.) 001443461 020__ $$z9783030886882 001443461 020__ $$z3030886883 001443461 0247_ $$a10.1007/978-3-030-88689-9$$2doi 001443461 035__ $$aSP(OCoLC)1290841418 001443461 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCO$$dDCT$$dOCLCF$$dOCLCO$$dN$T$$dUKAHL$$dOCLCQ 001443461 049__ $$aISEA 001443461 050_4 $$aQC176.8.N35$$bS33 2022 001443461 08204 $$a539.7/25$$223 001443461 1001_ $$aSachs, Johannes,$$eauthor. 001443461 24510 $$aMotion, symmetry & spectroscopy of chiral nanostructures /$$cJohannes Sachs. 001443461 264_1 $$aCham :$$bSpringer,$$c[2022] 001443461 264_4 $$c©2022 001443461 300__ $$a1 online resource :$$billustrations (chiefly color). 001443461 336__ $$atext$$btxt$$2rdacontent 001443461 337__ $$acomputer$$bc$$2rdamedia 001443461 338__ $$aonline resource$$bcr$$2rdacarrier 001443461 347__ $$atext file$$bPDF$$2rda 001443461 4901_ $$aSpringer theses 001443461 500__ $$a"Doctoral thesis accepted by the University of Stuttgart, Germany." 001443461 504__ $$aIncludes bibliographical references. 001443461 5050_ $$aIntroduction -- Fundamentals of Chiral Nanostructures in Fluids -- Motion of Chiral and Achiral Structures at Low Re -- Chiroptical Spectroscopy of Single Chiral and Achiral Nanoparticles -- Conclusions and Outlook. 001443461 506__ $$aAccess limited to authorized users. 001443461 520__ $$aThis book focuses on complex shaped micro- and nanostructures for future biomedical and sensing applications that were investigated by both theory and experiments. The first part of the book explores rotation-translation coupling of artificial microswimmers at low Reynolds numbers. Usually corkscrew shapes, i.e chiral shapes, are considered in such experiments, due to their inspiration from nature. However, the analysis of the relevant symmetries shows that achiral objects can also be propulsive, which is experimentally demonstrated for the first time. In the second part, a new single-particle spectroscopy technique was developed and the role of symmetry in such measurements is carefully examined. Spectra stemming from one individual nanoparticle that is moving freely in bulk solution, away from a surface, and only due to Brownian motion, are presented. On that basis, the rotationally averaged chiroptical spectrum of a single nanoparticle is measured - a novel observable that has not been accessible before. 001443461 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed January 18, 2022). 001443461 650_0 $$aNanoparticles. 001443461 650_0 $$aNanoparticle dynamics. 001443461 650_0 $$aChirality. 001443461 650_6 $$aNanoparticules. 001443461 650_6 $$aChiralité. 001443461 655_0 $$aElectronic books. 001443461 77608 $$iPrint version:$$z3030886883$$z9783030886882$$w(OCoLC)1267390169 001443461 830_0 $$aSpringer theses. 001443461 852__ $$bebk 001443461 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-88689-9$$zOnline Access$$91397441.1 001443461 909CO $$ooai:library.usi.edu:1443461$$pGLOBAL_SET 001443461 980__ $$aBIB 001443461 980__ $$aEBOOK 001443461 982__ $$aEbook 001443461 983__ $$aOnline 001443461 994__ $$a92$$bISE